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A few words from the author . . .

Over the past three years I have tried to offer mathematical support to many hundreds of
students in the early stages of their degree programmes in engineering.

On many, many occasions I have found that gaps in mathematical knowledge impede progress
both in engineering mathematics and also in some of the engineering topics that the students are
studying. Sometimes these gaps arise because they have long-since forgotten basic techniques.
Sometimes, for a variety of reasons, they seem to have never met certain fundamentals in their
previous studies. Whatever the underlying reasons, the only practical remedy is to have available
resources which can quickly get to the heart of the problem, which can outline a technique or
formula or important results, and, importantly, which students can take away with them. This
Engineering Maths First-Aid Kit is my attempt at addressing this need.

I am well aware that an approach such as this is not ideal. What many students need is a
prolonged and structured course in basic mathematical techniques, when all the foundations
can be properly laid and there is time to practice and develop confidence. Piecemeal attempts
at helping a student do not really get to the root of the underlying problem. Nevertheless I
see this Kit as a realistic and practical damage-limitation exercise, which can provide sufficient
sticking plaster to enable the student to continue with the other aspects of their studies which
are more important to them.

I have used help leaflets similar to these in the Mathematics Learning Support Centre at Lough-
borough. They are particularly useful at busy times when I may have just a few minutes to
try to help a student, and I would like to revise a topic briefly, and then provide a few simple
practice exercises. You should realise that these leaflets are not an attempt to put together a
coherent course in engineering mathematics, they are not an attempt to replace a textbook, nor
are they intended to be comprehensive in their treatment of individual topics. They are what I
say – elements of a First-Aid kit.

I hope that some of your students find that they ease the pain!

Tony Croft
December 1999
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✠1.1

Fractions
Introduction
The ability to work confidently with fractions, both number fractions and algebraic fractions, is
an essential skill which underpins all other algebraic processes. In this leaflet we remind you of
how number fractions are simplified, added, subtracted, multiplied and divided.

1. Expressing a fraction in its simplest form

In any fraction
p

q
, say, the number p at the top is called the numerator. The number q at

the bottom is called the denominator. The number q must never be zero. A fraction can
always be expressed in different, yet equivalent forms. For example, the two fractions 2

6
and

1
3

are equivalent. They represent the same value. A fraction is expressed in its simplest form
by cancelling any factors which are common to both the numerator and the denominator. You
need to remember that factors are numbers which are multiplied together. We note that

2

6
=

1 × 2

2 × 3

and so there is a factor of 2 which is common to both the numerator and the denominator. This
common factor can be cancelled to leave the equivalent fraction 1

3
. Cancelling is equivalent to

dividing the top and the bottom by the common factor.

Example
12
20

is equivalent to 3
5

since
12

20
=

4 × 3

4 × 5
=

3

5

Exercises

1. Express each of the following fractions in its simplest form:

a) 12
16

, b) 14
21

, c) 3
6
, d) 100

45
, e) 7

9
, f) 15

55
, g) 3

24
.

Answers

1. a) 3
4
, b) 2

3
, c) 1

2
, d) 20

9
, e) 7

9
, f) 3

11
, g) 1

8
.

2. Addition and subtraction of fractions
To add two fractions we first rewrite each fraction so that they both have the same denominator.
This denominator is chosen to be the lowest common denominator. This is the smallest
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number which is a multiple of both denominators. Then, the numerators only are added, and
the result is divided by the lowest common denominator.

Example
Simplify a) 7

16
+ 5

16
, b) 7

16
+ 3

8
.

Solution
a) In this case the denominators of each fraction are already the same. The lowest common
denominator is 16. We perform the addition by simply adding the numerators and dividing
the result by the lowest common denominator. So, 7

16
+ 5

16
= 7+5

16
= 12

16
. This answer can be

expressed in the simpler form 3
4

by cancelling the common factor 4.

b) To add these fractions we must rewrite them so that they have the same denominator. The
lowest common denominator is 16 because this is the smallest number which is a multiple of
both denominators. Note that 3

8
is equivalent to 6

16
and so we write 7

16
+ 3

8
= 7

16
+ 6

16
= 13

16
.

Example
Find 1

2
+ 2

3
+ 4

5
.

Solution
The smallest number which is a multiple of the given denominators is 30. We express each
fraction with a denominator of 30.

1

2
+

2

3
+

4

5
=

15

30
+

20

30
+

24

30
=

59

30

Exercises
1. Evaluate each of the following:

a) 2
3

+ 5
4
, b) 4

9
− 1

2
, c) 3

4
+ 5

6
, d) 1

4
+ 1

3
+ 1

2
, e) 2

5
− 1

3
− 1

10
, f) 4

5
+ 1

3
− 3

4
.

Answers
1. a) 23

12
, b) − 1

18
, c) 19

12
, d) 13

12
, e) − 1

30
, f) 23

60
.

3. Multiplication and division of fractions
Multiplication of fractions is more straightforward. We simply multiply the numerators to give
a new numerator, and multiply the denominators to give a new denominator. For example

5

7
× 3

4
=

5 × 3

7 × 4
=

15

28

Division is performed by inverting the second fraction and then multiplying. So,

5

7
÷ 3

4
=

5

7
× 4

3
=

20

21

Exercises
1. Find a) 4

26
× 13

7
, b) 2

11
÷ 3

5
, c) 2

1
× 1

2
, d) 3

7
× 2

5
, e) 3

11
× 22

5
, f) 5

6
÷ 4

3
.

Answers
1. a) 2

7
, b) 10

33
, c) 1, d) 6

35
, e) 6

5
, f) 5

8
.
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✠1.2

Powers and roots
Introduction
Powers are used when we want to multiply a number by itself repeatedly.

1. Powers
When we wish to multiply a number by itself we use powers, or indices as they are also called.

For example, the quantity 7 × 7 × 7 × 7 is usually written as 74. The number 4 tells us the
number of sevens to be multiplied together. In this example, the power, or index, is 4. The
number 7 is called the base.

Example
62 = 6 × 6 = 36. We say that ‘6 squared is 36’, or ‘6 to the power 2 is 36’.

25 = 2 × 2 × 2 × 2 × 2 = 32. We say that ‘2 to the power 5 is 32’.

Your calculator will be pre-programmed to evaluate powers. Most calculators have a button
marked xy, or simply .̂ Ensure that you are using your calculator correctly by verifying that
311 = 177147.

2. Square roots
When 5 is squared we obtain 25. That is 52 = 25.

The reverse of this process is called finding a square root. The square root of 25 is 5. This
is written as 2

√
25 = 5, or simply

√
25 = 5.

Note also that when −5 is squared we again obtain 25, that is (−5)2 = 25. This means that 25
has another square root, −5.

In general, a square root of a number is a number which when squared gives the original number.
There are always two square roots of any positive number, one positive and one negative.
However, negative numbers do not possess any square roots.

Most calculators have a square root button, probably marked
√

. Check that you can use your

calculator correctly by verifying that
√

79 = 8.8882, to four decimal places. Your calculator will
only give the positive square root but you should be aware that the second, negative square root
is −8.8882.

An important result is that the square root of a product of two numbers is equal to the product
of the square roots of the two numbers. For example

√
16 × 25 =

√
16 ×

√
25 = 4 × 5 = 20

1.2.1 copyright c© Pearson Education Limited, 2000



More generally, √
ab =

√
a×

√
b

However, your attention is drawn to a common error which students make. It is not true that√
a+ b =

√
a+

√
b. Substitute some simple values for yourself to see that this cannot be right.

Exercises
1. Without using a calculator write down the value of

√
9 × 36.

2. Find the square of the following: a)
√

2, b)
√

12.

3. Show that the square of 5
√

2 is 50.

Answers
1. 18 (and also −18). 2. a) 2, b) 12.

3. Cube roots and higher roots
The cube root of a number is the number which when cubed gives the original number. For
example, because 43 = 64 we know that the cube root of 64 is 4, written 3

√
64 = 4. All numbers,

both positive and negative, possess a single cube root.

Higher roots are defined in a similar way: because 25 = 32, the fifth root of 32 is 2, written
5
√

32 = 2.

Exercises
1. Without using a calculator find a) 3

√
27, b) 3

√
125.

Answers
1. a) 3, b) 5.

4. Surds
Expressions involving roots, for example

√
2 and 5 3

√
2, are also known as surds. Frequently,

in engineering calculations it is quite acceptable to leave an answer in surd form rather than
calculating its decimal approximation with a calculator.

It is often possible to write surds in equivalent forms. For example,
√

48 can be written as√
3 × 16, that is

√
3 ×

√
16 = 4

√
3.

Exercises
1. Write the following in their simplest surd form: a)

√
180, b)

√
63.

2. By multiplying numerator and denominator by
√

2 + 1, show that

1√
2 − 1

is equivalent to
√

2 + 1

Answers
1. a) 6

√
5, b) 3

√
7.
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Scientific notation
Introduction
In engineering calculations numbers are often very small or very large, for example 0.00000345
and 870,000,000. To avoid writing lengthy strings of numbers a notation has been developed,
known as scientific notation which enables us to write numbers much more concisely.

1. Scientific notation
In scientific notation each number is written in the form

a× 10n

where a is a number between 1 and 10 and n is a positive or negative whole number.

Some numbers in scientific notation are

5 × 103, 2.67 × 104, 7.90 × 10−3

To understand scientific notation you need to be aware that

101 = 10, 102 = 100, 103 = 1000, 104 = 10000, and so on,

and also that

10−1 =
1

10
= 0.1, 10−2 =

1

100
= 0.01, 10−3 =

1

1000
= 0.001, and so on.

You also need to remember how simple it is to multiply a number by powers of 10. For example,
to multiply 3.45 by 10, the decimal point is moved one place to the right to give 34.5. To
multiply 29.65 by 100, the decimal point is moved two places to the right to give 2965. In
general, to multiply a number by 10n the decimal point is moved n places to the right if n is
a positive whole number and n places to the left if n is a negative whole number. It may be
necessary to insert additional zeros to make up the required number of digits.

Example
The following numbers are given in scientific notation. Write them out fully.

a) 5 × 103, b) 2.67 × 104, c) 7.90 × 10−3.

Solution
a) 5 × 103 = 5 × 1000 = 5000.
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b) 2.67 × 104 = 26700.

c) 7.90 × 10−3 = 0.00790.

Example
Express each of the following numbers in scientific notation.

a) 5670000, b) 0.0098.

Solution
a) 5670000 = 5.67 × 106.

b) 0.0098 = 9.8 × 10−3.

Exercises
1. Express each of the following in scientific notation.

a) 0.00254, b) 82, c) −0.342, d) 1000000.

Answers
1. a) 2.54 × 10−3, b) 8.2 × 10, c) −3.42 × 10−1, d) 1 × 106 or simply 106.

2. Using a calculator
Students often have difficulty using a calculator to deal with scientific notation. You may need to
refer to your calculator manual to ensure that you are entering numbers correctly. You should
also be aware that your calculator can display a number in lots of different forms, including
scientific notation. Usually a MODE button is used to select the appropriate format.

Commonly the EXP button is used to enter numbers in scientific notation. (EXP stands for
exponent which is another name for a power.) A number like 3.45×107 is entered as 3.45EXP 7
and might appear in the calculator window as 3.45 07. Alternatively your calculator may require
you to enter the number as 3.45E7 and it may be displayed in the same way. You should seek
help if in doubt.

Computer programming languages use similar notation. For example

8.25 × 107 may be programmed as 8.25E7

and
9.1 × 10−3 may be programmed as 9.1E−3

Again, you need to take care and check the required syntax carefully.

A common error is to enter incorrectly numbers which are simply powers of 10. For example,
the number 107 is erroneously entered as 10E7 which means 10 × 107, that is 108. The number
107, meaning 1 × 107, should be entered as 1E7.

Check that you are using your calculator correctly by verifying that

(3 × 107) × (2.76 × 10−4) × (105) = 8.28 × 108

1.3.2 copyright c© Pearson Education Limited, 2000
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Factorials
Introduction
In many engineering calculations you will come across the symbol ! which you may not have met
before in mathematics classes. This is known as a factorial. The factorial is a symbol which is
used when we wish to multiply consecutive whole numbers together, as you will see below.

1. Factorials
The number 5 × 4 × 3 × 2 × 1 is written as 5!, which is read as ‘five factorial’. If you actually
perform the multiplication you will find that 5! = 120. Similarly 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1
which equals 5040. A rather special case is 0!. This is defined to equal 1 and this might seem
somewhat strange. Just learn this!

You will not be required to find factorials of negative numbers or fractions.

Factorials are used in combination notation which arises frequently in probability theory.
The notation

(
n
r

)
stands for n!

(n−r)!r!
. For example(

6

4

)
=

6!

(6 − 4)!4!
=

6!

2!4!

Exercises

1. Without using a calculator evaluate 2!, 3! and 4!.

2. Show that 5!
3!

equals 20.

3. Explain why n! = n× (n− 1)! for any positive whole number n.

4. Explain why
n!

(n− 1)!
= n for any positive whole number n.

5. Evaluate a)
(

9
3

)
, b)

(
5
2

)
, c)

(
6
1

)
.

Answers
1. 2! = 2 3! = 6 and 4! = 24. Note that 3! = 3 × 2!, and that 4! = 4 × 3!.

5. a) 84, b) 10, c) 6.

2. Using a calculator to find factorials
Your scientific calculator will be pre-programmed to find factorials. Look for a button marked
!, or consult your calculator manual. Check that you can use your calculator to find factorials
by verifying that

10! = 3628800
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The modulus of a number
Introduction
In many engineering calculations you will come across the symbol | | . This is known as the
modulus.

1. The modulus of a number
The modulus of a number is its absolute size. That is, we disregard any sign it might have.

Example
The modulus of −8 is simply 8.

The modulus of −1
2

is 1
2
.

The modulus of 17 is simply 17.

The modulus of 0 is 0.

So, the modulus of a positive number is simply the number.

The modulus of a negative number is found by ignoring the minus sign.

The modulus of a number is denoted by writing vertical lines around the number.

Note also that the modulus of a negative number can be found by multiplying it by −1 since,
for example, −(−8) = 8.

This observation allows us to define the modulus of a number quite concisely in the following
way

|x| =

{
x if x is positive or zero
−x if x is negative

Example

|9| = 9, | − 11| = 11, |0.25| = 0.25, | − 3.7| = 3.7

Exercise
1. Draw up a table of values of |x| as x varies between −6 and 6. Plot a graph of y = |x|.
Compare your graph with the graphs of y = x and y = −x.
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The laws of indices
Introduction
A power, or an index, is used to write a product of numbers very compactly. The plural of
index is indices. In this leaflet we remind you of how this is done, and state a number of rules,
or laws, which can be used to simplify expressions involving indices.

1. Powers, or indices
We write the expression

3 × 3 × 3 × 3 as 34

We read this as ‘three to the power four’.

Similarly

z × z × z = z3

We read this as ‘z to the power three’ or ‘z cubed’.

In the expression bc, the index is c and the number b is called the base. Your calculator will
probably have a button to evaluate powers of numbers. It may be marked xy. Check this, and
then use your calculator to verify that

74 = 2401 and 255 = 9765625

Exercises
1. Without using a calculator work out the value of

a) 42, b) 53, c) 25, d)
(

1
2

)2
, e)

(
1
3

)2
, f)

(
2
5

)3
.

2. Write the following expressions more concisely by using an index.

a) a× a× a× a, b) (yz) × (yz) × (yz), c)
(
a
b

)
×

(
a
b

)
×

(
a
b

)
.

Answers
1. a) 16, b) 125, c) 32, d) 1

4
, e) 1

9
, f) 8

125
.

2. a) a4, b) (yz)3, c)
(
a
b

)3
.

2. The laws of indices
To manipulate expressions involving indices we use rules known as the laws of indices. The
laws should be used precisely as they are stated – do not be tempted to make up variations of
your own! The three most important laws are given here:
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First law
am × an = am+n

When expressions with the same base are multiplied, the indices are added.

Example
We can write

76 × 74 = 76+4 = 710

You could verify this by evaluating both sides separately.

Example

z4 × z3 = z4+3 = z7

Second law
am

an
= am−n

When expressions with the same base are divided, the indices are subtracted.

Example
We can write

85

83
= 85−3 = 82 and similarly

z7

z4
= z7−4 = z3

Third law
(am)n = amn

Note that m and n have been multiplied to yield the new index mn.

Example

(64)2 = 64×2 = 68 and (ex)y = exy

It will also be useful to note the following important results:

a0 = 1, a1 = a

Exercises
1. In each case choose an appropriate law to simplify the expression:

a) 53 × 513, b) 813 ÷ 85, c) x6 × x5, d) (a3)4, e) y7

y3 , f) x8

x7 .

2. Use one of the laws to simplify, if possible, a6 × b5.

Answers
1. a) 516, b) 88, c) x11, d) a12, e) y4, f) x1 = x.

2. This cannot be simplified because the bases are not the same.
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Negative and fractional powers
Introduction
Sometimes it is useful to use negative and fractional powers. These are explained in this leaflet.

1. Negative powers
Sometimes you will meet a number raised to a negative power. This is interpreted as follows:

a−m =
1

am

This can be rearranged into the alternative form:

am =
1

a−m

Example

3−2 =
1

32
,

1

5−2
= 52, x−1 =

1

x1
=

1

x
, x−2 =

1

x2
, 2−5 =

1

25
=

1

32

Exercises
1. Write the following using only positive powers:

a)
1

x−6
, b) x−12, c) t−3, d) 1

4−3 , e) 5−17.

2. Without using a calculator evaluate a) 2−3, b) 3−2, c) 1
4−2 , d) 1

2−5 , e) 1
4−3 .

Answers
1. a) x6, b) 1

x12 , c) 1
t3

, d) 43, e) 1
517 .

2. a) 2−3 = 1
23 = 1

8
, b) 1

9
, c) 16, d) 32, e) 64.

2. Fractional powers
To understand fractional powers you first need to have an understanding of roots, and in par-
ticular square roots and cube roots. If necessary you should consult leaflet 1.2 Powers and
Roots.

When a number is raised to a fractional power this is interpreted as follows:
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a1/n = n
√
a

So,
a1/2 is a square root of a

a1/3 is the cube root of a

a1/4 is a fourth root of a

Example

31/2 =
2
√

3, 271/3 =
3
√

27 or 3, 321/5 =
5
√

32 = 2,

641/3 =
3
√

64 = 4, 811/4 =
4
√

81 = 3

Fractional powers are useful when we need to calculate roots using a scientific calculator. For
example to find 7

√
38 we rewrite this as 381/7 which can be evaluated using a scientific calculator.

You may need to check your calculator manual to find the precise way of doing this, probably
with the buttons xy or x1/y.

Check that you are using your calculator correctly by confirming that

381/7 = 1.6814 (4 dp)

More generally am/n means n
√
am, or equivalently ( n

√
a)m.

am/n = n
√
am or equivalently

(
n
√
a
)m

Example

82/3 = (
3
√

8)2 = 22 = 4 and 323/5 = (
5
√

32)3 = 23 = 8

Exercises

1. Use a calculator to find a) 5
√

96, b) 4
√

32.

2. Without using a calculator, evaluate a) 43/2, b) 272/3.

3. Use the third law of indices to show that

am/n = n
√
am

and equivalently

am/n =
(

n
√
a
)m

Answers

1. a) 2.4915, b) 2.3784. 2. a) 43/2 = 8, b) 272/3 = 9.
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Removing brackets 1
Introduction
In order to simplify mathematical expressions it is frequently necessary to ‘remove brackets’.
This means to rewrite an expression which includes bracketed terms in an equivalent form, but
without any brackets. This operation must be carried out according to certain rules which are
described in this leaflet.

1. The associativity and commutativity of multiplication
Multiplication is said to be a commutative operation. This means, for example, that 4×5 has
the same value as 5 × 4. Either way the result is 20. In symbols, xy is the same as yx, and so
we can interchange the order as we wish.

Multiplication is also an associative operation. This means that when we want to multiply
three numbers together such as 4 × 3 × 5 it doesn’t matter whether we evaluate 4 × 3 first and
then multiply by 5, or evaluate 3 × 5 first and then multiply by 4. That is

(4 × 3) × 5 is the same as 4 × (3 × 5)

where we have used brackets to indicate which terms are multiplied first. Either way, the result
is the same, 60. In symbols, we have

(x× y) × z is the same as x× (y × z)

and since the result is the same either way, the brackets make no difference at all and we can
write simply x× y× z or simply xyz. When mixing numbers and symbols we usually write the
numbers first. So

7 × a× 2 = 7 × 2 × a through commutativity

= 14a

Example
Remove the brackets from a) 4(2x), b) a(5b).

Solution
a) 4(2x) means 4×(2×x). Because of associativity of multiplication the brackets are unnecessary
and we can write 4 × 2 × x which equals 8x.

b) a(5b) means a×(5b). Because of commutativity this is the same as (5b)×a, that is (5×b)×a.
Because of associativity the brackets are unnecessary and we write simply 5×b×a which equals
5ba. Note that this is also equal to 5ab because of commutativity.
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Exercises
1. Simplify

a) 9(3y), b) (5x) × (5y), c) 3(−2a), d) −7(−9x), e) 12(3m), f) 5x(y).

Answers
1. a) 27y, b) 25xy, c) −6a, d) 63x, e) 36m, f) 5xy.

2. Expressions of the form a(b + c) and a(b− c)
Study the expression 4× (2+3). By working out the bracketed term first we obtain 4× 5 which
equals 20. Note that this is the same as multiplying both the 2 and 3 separately by 4, and then
adding the results. That is

4 × (2 + 3) = 4 × 2 + 4 × 3 = 8 + 12 = 20

Note the way in which the ‘4’ multiplies both the bracketed numbers, ‘2’ and ‘3’. We say that
the ‘4’ distributes itself over both the added terms in the brackets – multiplication is distributive
over addition.

Now study the expression 6× (8− 3). By working out the bracketed term first we obtain 6× 5
which equals 30. Note that this is the same as multiplying both the 8 and the 3 by 6 before
carrying out the subtraction:

6 × (8 − 3) = 6 × 8 − 6 × 3 = 48 − 18 = 30

Note the way in which the ‘6’ multiplies both the bracketed numbers. We say that the ‘6’ dis-
tributes itself over both the terms in the brackets – multiplication is distributive over subtraction.
Exactly the same property holds when we deal with symbols.

a(b+ c) = ab+ ac a(b− c) = ab− ac

Example
4(5 + x) is equivalent to 4 × 5 + 4 × x which equals 20 + 4x.

5(a− b) is equivalent to 5 × a − 5 × b which equals 5a− 5b.

7(x− 2y) is equivalent to 7 × x − 7 × 2y which equals 7x− 14y.

−4(5 + x) is equivalent to −4 × 5 + −4 × x which equals −20 − 4x.

−5(a− b) is equivalent to −5 × a − −5 × b which equals −5a+ 5b.

−(a+ b) is equivalent to −a− b.

Exercises
Remove the brackets from each of the following expressions, simplifying your answers where
appropriate.

1. 8(3 + 2y). 2. 7(−x+ y). 3. −7(−x+ y). 4. −(3 + 2x). 5. −(3 − 2x).

6. −(−3 − 2x). 7. x(x+ 1). 8. 15(x+ y). 9. 15(xy). 10. 11(m+ 3n).

Answers
1. 24 + 16y. 2. −7x+ 7y. 3. 7x− 7y. 4. −3 − 2x. 5. −3 + 2x. 6. 3 + 2x.
7. x2 + x. 8. 15x+ 15y. 9. 15xy. 10. 11m+ 33n.
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Removing brackets 2
Introduction
In this leaflet we show the correct procedure for writing expressions of the form (a + b)(c + d)
in an alternative form without brackets.

1. Expressions of the form (a + b)(c + d)

In the expression (a+ b)(c+ d) it is intended that each term in the first bracket multiplies each
term in the second.

(a+ b)(c+ d) = ac+ bc+ ad+ bd

Example
Removing the brackets from (5 + a)(2 + b) gives

5 × 2 + a× 2 + 5 × b + a× b

which simplifies to
10 + 2a+ 5b+ ab

.

Example
Removing the brackets from (x+ 6)(x+ 2) gives

x× x + 6 × x + x× 2 + 6 × 2

which equals
x2 + 6x+ 2x+ 12

which simplifies to
x2 + 8x+ 12

Example
Removing the brackets from (x+ 7)(x− 3) gives

x× x + 7 × x + x×−3 + 7 ×−3

which equals
x2 + 7x− 3x− 21
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which simplifies to
x2 + 4x− 21

Example
Removing the brackets from (2x+ 3)(x+ 4) gives

2x× x + 3 × x + 2x× 4 + 3 × 4

which equals
2x2 + 3x+ 8x+ 12

which simplifies to
2x2 + 11x+ 12

Occasionally you will need to square a bracketed expression. This can lead to errors. Study the
following example.

Example
Remove the brackets from (x+ 1)2.

Solution
You need to be clear that when a quantity is squared it is multiplied by itself. So

(x+ 1)2 means (x+ 1)(x+ 1)

Then removing the brackets gives

x× x + 1 × x + x× 1 + 1 × 1

which equals
x2 + x+ x+ 1

which simplifies to
x2 + 2x+ 1

Note that (x+ 1)2 is not equal to x2 + 1, and more generally (x+ y)2 is not equal to x2 + y2.

Exercises
Remove the brackets from each of the following expressions, simplifying your answers
where appropriate.

1. a) (x+ 2)(x+ 3), b) (x− 4)(x+ 1), c) (x− 1)2, d) (3x+ 1)(2x− 4).

2. a) (2x− 7)(x− 1), b) (x+ 5)(3x− 1), c) (2x+ 1)2, d) (x− 3)2.

Answers
1. a) x2 + 5x+ 6, b) x2 − 3x− 4, c) x2 − 2x+ 1, d) 6x2 − 10x− 4.

2. a) 2x2 − 9x+ 7, b) 3x2 + 14x− 5, c) 4x2 + 4x+ 1, d) x2 − 6x+ 9.
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Factorising simple expressions
Introduction
Before studying this material you must be familiar with the process of ‘removing brackets’ as
outlined in leaflets 2.3 & 2.4. This is because factorising can be thought of as reversing the
process of removing brackets. When we factorise an expression it is written as a product of two
or more terms, and these will normally involve brackets.

1. Products and factors
To obtain the product of two numbers they are multiplied together. For example the product
of 3 and 4 is 3×4 which equals 12. The numbers which are multiplied together are called factors.
We say that 3 and 4 are both factors of 12.

Example
The product of x and y is xy.

The product of 5x and 3y is 15xy.

Example
2x and 5y are factors of 10xy since when we multiply 2x by 5y we obtain 10xy.

(x + 1) and (x + 2) are factors of x2 + 3x + 2 because when we multiply (x + 1) by (x + 2) we
obtain x2 + 3x+ 2.

3 and x− 5 are factors of 3x− 15 because

3(x− 5) = 3x− 15

2. Common factors

Sometimes, if we study two expressions to find their factors, we might note that some of the
factors are the same. These factors are called common factors.

Example
Consider the numbers 18 and 12.

Both 6 and 3 are factors of 18 because 6 × 3 = 18.

Both 6 and 2 are factors of 12 because 6 × 2 = 12.

So, 18 and 12 share a common factor, namely 6.
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In fact 18 and 12 share other common factors. Can you find them?

Example
The number 10 and the expression 15x share a common factor of 5.

Note that 10 = 5 × 2, and 15x = 5 × 3x. Hence 5 is a common factor.

Example
3a2 and 5a share a common factor of a since

3a2 = 3a× a and 5a = 5 × a. Hence a is a common factor.

Example
8x2 and 12x share a common factor of 4x since

8x2 = 4x× 2x and 12x = 3 × 4x. Hence 4x is a common factor.

3. Factorising
To factorise an expression containing two or more terms it is necessary to look for factors which
are common to the different terms. Once found, these common factors are written outside a
bracketed term. It is ALWAYS possible to check your answers when you factorise by simply
removing the brackets again, so you shouldn’t get them wrong.

Example
Factorise 15x+ 10.

Solution
First we look for any factors which are common to both 15x and 10. The common factor here
is 5. So the original expression can be written

15x+ 10 = 5(3x) + 5(2)

which shows clearly the common factor. This common factor is written outside a bracketed
term, the remaining quantities being placed inside the bracket:

15x+ 10 = 5(3x+ 2)

and the expression has been factorised. We say that the factors of 15x + 10 are 5 and 3x + 2.
Your answer can be checked by showing

5(3x+ 2) = 5(3x) + 5(2) = 15x+ 10

Exercises
Factorise each of the following:

1. 10x+ 5y. 2. 21 + 7x. 3. xy − 8x. 4. 4x− 8xy.

Answers
1. 5(2x+ y). 2. 7(3 + x). 3. x(y − 8). 4. 4x(1 − 2y).
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Factorising quadratics
Introduction

In this leaflet we explain the procedure for factorising quadratic expressions such as x2 +5x+6.

1. Factorising quadratics

You will find that you are expected to be able to factorise expressions such as x2 + 5x+ 6.

First of all note that by removing the brackets from

(x+ 2)(x+ 3)

we find

(x+ 2)(x+ 3) = x2 + 2x+ 3x+ 6 = x2 + 5x+ 6

When we factorise x2 + 5x+ 6 we are looking for the answer (x+ 2)(x+ 3).

It is often convenient to do this by a process of educated guesswork and trial and error.

Example
Factorise x2 + 6x+ 5.

Solution
We would like to write x2 + 6x+ 5 in the form

( + )( + )

First note that we can achieve the x2 term by placing an x in each bracket:

(x + )(x + )

The next place to look is the constant term in x2 + 6x+ 5, that is, 5. By removing the brackets
you will see that this is calculated by multiplying the two numbers in the brackets together.
We seek two numbers which multiply together to give 5. Clearly 5 and 1 have this property,
although there are others. So

x2 + 6x+ 5 = (x+ 5)(x+ 1)

At this stage you should always remove the brackets again to check.

The factors of x2 + 6x+ 5 are (x+ 5) and (x+ 1).
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Example
Factorise x2 − 6x+ 5.

Solution
Again we try to write the expression in the form

x2 − 6x+ 5 = (x + )(x + )

And again we seek two numbers which multiply to give 5. However, this time 5 and 1 will not
do, because using these we would obtain a middle term of +6x as we saw in the last example.
Trying −5 and −1 will do the trick.

x2 − 6x+ 5 = (x− 5)(x− 1)

You see that some thought and perhaps a little experimentation is required.

You will need even more thought and care if the coefficient of x2, that is the number in front of
the x2, is anything other than 1. Consider the following example.

Example
Factorise 2x2 + 11x+ 12.

Solution
Always start by trying to obtain the correct x2 term.

We write
2x2 + 11x+ 12 = (2x + )(x + )

Then study the constant term 12. It has a number of pairs of factors, for example 3 and 4, 6
and 2 and so on. By trial and error you will find that the correct factorisation is

2x2 + 11x+ 12 = (2x+ 3)(x+ 4)

but you will only realise this by removing the brackets again.

Exercises
1. Factorise each of the following:

a) x2 +5x+4, b) x2−5x+4, c) x2 +3x−4, d) x2−3x−4, e) 2x2−13x−7,
f) 2x2 + 13x− 7, g) 3x2 − 2x− 1, h) 3x2 + 2x− 1, i) 6x2 + 13x+ 6.

Answers
1. a) (x+1)(x+4), b) (x−1)(x−4), c) (x−1)(x+4), d) (x+1)(x−4), e) (2x+1)(x−7),
f) (2x− 1)(x+ 7), g) (3x+ 1)(x− 1), h) (3x− 1)(x+ 1), i) (3x+ 2)(2x+ 3).
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Simplifying fractions
Introduction
Fractions involving symbols occur very frequently in engineering mathematics. It is necessary
to be able to simplify these and rewrite them in different but equivalent forms. In this leaflet
we revise how these processes are carried out. It will be helpful if you have already seen leaflet
1.1 Fractions.

1. Expressing a fraction in its simplest form
An algebraic fraction can always be expressed in different, yet equivalent forms. A fraction
is expressed in its simplest form by cancelling any factors which are common to both the
numerator and the denominator. You need to remember that factors are multiplied together.

For example, the two fractions
7a

ab
and

7

b

are equivalent. Note that there is a common factor of a in the numerator and the denominator

of
7a

ab
which can be cancelled to give

7

b
.

To express a fraction in its simplest form, any factors which are common to both the numerator
and the denominator are cancelled.

Notice that cancelling is equivalent to dividing the top and the bottom by the common factor.

It is also important to note that
7

b
can be converted back to the equivalent fraction

7a

ab
by

multiplying both the numerator and denominator of
7

b
by a.

A fraction is expressed in an equivalent form by multiplying both top and bottom by the same
quantity, or dividing top and bottom by the same quantity.

Example
The two fractions

10y2

15y5
and

2

3y3

are equivalent. Note that
10y2

15y5
=

2 × 5 × y × y
3 × 5 × y × y × y × y × y
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and so there are common factors of 5 and y × y. These can be cancelled to leave
2

3y3
.

Example
The fractions

(x− 1)(x+ 3)

(x+ 3)(x+ 5)
and

(x− 1)

(x+ 5)

are equivalent. In the first fraction, the common factor (x+ 3) can be cancelled.

Example
The fractions

2a(3a− b)
7a(a+ b)

and
2(3a− b)
7(a+ b)

are equivalent. In the first fraction, the common factor a can be cancelled. Nothing else can be
cancelled.

Example
In the fraction

a− b
a+ b

there are no common factors which can be cancelled. Neither a nor b is a factor of the numerator.
Neither a nor b is a factor of the denominator.

Example

Express
5x

2x+ 1
as an equivalent fraction with denominator (2x+ 1)(x− 7).

Solution
To achieve the required denominator we must multiply both top and bottom by (x− 7). That
is

5x

2x+ 1
=

(5x)(x− 7)

(2x+ 1)(x− 7)

If we wished, the brackets could now be removed to write the fraction as
5x2 − 35x

2x2 − 13x− 7
.

Exercises
1. Express each of the following fractions in its simplest form:

a) 12xy
16x

, b) 14ab
21a2b2

, c) 3x2y
6x

, d) 3(x+1)
(x+1)2

, e) (x+3)(x+1)
(x+2)(x+3)

, f) 100x
45

, g) a+b
ab

.

Answers
1. a) 3y

4
, b) 2

3ab
, c) xy

2
, d) 3

x+1
, e) x+1

x+2
, f) 20x

9
, g) cannot be simplified. Whilst both

a and b are factors of the denominator, neither a nor b is a factor of the numerator.
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Addition and subtraction
Introduction
Fractions involving symbols occur very frequently in engineering mathematics. It is necessary
to be able to add and subtract them. In this leaflet we revise how these processes are carried
out. An understanding of writing fractions in equivalent forms is necessary. (See leaflet 2.7
Simplifying fractions.)

1. Addition and subtraction of fractions
To add two fractions we must first rewrite each fraction so that they both have the same
denominator. The denominator is called the lowest common denominator. It is the simplest
expression which is a multiple of both of the original denominators. Then, the numerators only
are added, and the result is divided by the lowest common denominator.

Example
Express as a single fraction

7

a
+

9

b

Solution
Both fractions must be written with the same denominator. To achieve this, note that if the

numerator and denominator of the first are both multiplied by b we obtain
7b

ab
. This is equiv-

alent to the original fraction – it is merely written in a different form. If the numerator and

denominator of the second are both multiplied by a we obtain
9a

ab
. Then the problem becomes

7b

ab
+

9a

ab

In this form, both fractions have the same denominator. The lowest common denominator is
ab.

Finally we add the numerators and divide the result by the lowest common denominator:

7b

ab
+

9a

ab
=

7b+ 9a

ab

Example
Express as a single fraction

2

x+ 3
+

5

x− 1
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Solution
Both fractions can be written with the same denominator if both the numerator and denominator
of the first are multiplied by x − 1 and if both the numerator and denominator of the second
are multiplied by x+ 3. This gives

2

x+ 3
+

5

x− 1
=

2(x− 1)

(x+ 3)(x− 1)
+

5(x+ 3)

(x+ 3)(x− 1)

Then, adding the numerators gives

2(x− 1) + 5(x+ 3)

(x+ 3)(x− 1)

which, by simplifying the numerator, gives

7x+ 13

(x+ 3)(x− 1)

Example

Find
3

x+ 1
+

2

(x+ 1)2

Solution
The simplest expression which is a multiple of the original denominators is (x+ 1)2. This is the
lowest common denominator. Both fractions must be written with this denominator.

3

x+ 1
+

2

(x+ 1)2
=

3(x+ 1)

(x+ 1)2
+

2

(x+ 1)2

Adding the numerators and simplifying we find

3(x+ 1)

(x+ 1)2
+

2

(x+ 1)2
=

3x+ 3 + 2

(x+ 1)2
=

3x+ 5

(x+ 1)2

Exercises
1. Express each of the following as a single fraction:

a) 3
4

+ 1
x
, b) 1

a
− 2

5b
, c) 2

x2 + 1
x
, d) 2 + 1

3x
.

2. Express as a single fraction:

a) 2
x+1

+ 3
x+2

, b) 2
x+3

+ 5
(x+3)2

, c) 3x
x−1

+ 1
x
, d) 1

x−5
− 3

x+2
, e) 1

2x+1
− 7

x+3
.

Answers
1. a) 3x+4

4x
, b) 5b−2a

5ab
, c) 2+x

x2 , d) 6x+1
3x

.

2. a) 5x+7
(x+1)(x+2)

, b) 2x+11
(x+3)2

, c) 3x2+x−1
x(x−1)

, d) 17−2x
(x+2)(x−5)

, e) − 13x+4
(x+3)(2x+1)

.
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Multiplication and division
Introduction
Fractions involving symbols occur very frequently in engineering mathematics. It is necessary
to be able to multiply and divide them. In this leaflet we revise how these processes are carried
out. It will be helpful if you have already seen leaflet 1.1 Fractions.

1. Multiplication and division of fractions
Multiplication of fractions is straightforward. We simply multiply the numerators to give a new
numerator, and multiply the denominators to give a new denominator.

Example
Find

4

7
× a

b

Solution
Simply multiply the two numerators together, and multiply the two denominators together.

4

7
× a

b
=

4a

7b

Example
Find

3ab

5
× 7

6a

Solution

3ab

5
× 7

6a
=

21ab

30a

which, by cancelling common factors, can be simplified to
7b

10
.

Division is performed by inverting the second fraction and then multiplying.

Example

Find
3

2x
÷ 6

5y
.

2.9.1 copyright c© Pearson Education Limited, 2000



Solution

3

2x
÷ 6

5y
=

3

2x
× 5y

6

=
15y

12x

=
5y

4x

Example

Find
3

x+ 1
÷ x

(x+ 1)2
.

Solution

3

x+ 1
÷ x

(x+ 1)2
=

3

x+ 1
× (x+ 1)2

x

=
3(x+ 1)2

x(x+ 1)

=
3(x+ 1)

x

Exercises
1. Find a) 1

3
× x

2
, b) 2

x+1
× x

x−3
, c) −1

4
× 3

5
, d)

(
− 1

x

)
×

(
2
5y

)
, e) x+1

2(x+3)
× 8

x+1
.

2. Simplify
3

x+ 2
÷ x

2x+ 4

3. Simplify
x+ 2

(x+ 5)(x+ 4)
× x+ 5

x+ 2

4. Simplify
3

x
× 3

y
× 1

z

5. Find
4

3
÷ 16

x
.

Answers
1. a) x

6
, b) 2x

(x+1)(x−3)
, c) − 3

20
, d) − 2

5xy
, e) 4

x+3
.

2. 6
x
. 3. 1

x+4
. 4. 9

xyz
. 5. x

12
.
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Rearranging formulas 1
Introduction
The ability to rearrange formulas or rewrite them in different ways is an important skill in
engineering. This leaflet will explain how to rearrange some simple formulas. Leaflet 2.11 deals
with more complicated examples.

1. The subject of a formula
Most engineering students will be familiar with Ohm’s law which states that V = IR. Here, V
is a voltage drop, R is a resistance and I is a current. If the values of R and I are known then
the formula V = IR enables us to calculate the value of V . In the form V = IR, we say that
the subject of the formula is V . Usually the subject of a formula is on its own on the left-hand
side. You may also be familiar with Ohm’s law written in either of the forms

I =
V

R
and R =

V

I

In the first case I is the subject of the formula whilst in the second case R is the subject. If we
know values of V and R we can use I = V

R
to find I. On the other hand, if we know values of

V and I we can use R = V
I

to find R. So you see, it is important to be able to write formulas
in different ways, so that we can make a particular variable the subject.

2. Rules for rearranging, or transposing, a formula
You can think of a formula as a pair of balanced scales. The quantity on the left is equal to
the quantity on the right. If we add an amount to one side of the scale pans, say the left one,
then to keep balance we must add the same amount to the pan on the right. Similarly if we
take away an amount from the left, we must take the same amount away from the pan on the
right. The same applies to formulas. If we add an amount to one side, we must add the same to
the other to keep the formula valid. If we subtract an amount from one side we must subtract
the same amount from the other. Furthermore, if we multiply the left by any amount, we must
multiply the right by the same amount. If we divide the left by any amount we must divide the
right by the same amount. When you are trying to rearrange, or transpose, a formula, keep
these operations clearly in mind.

To transpose or rearrange a formula you may

• add or subtract the same quantity to or from both sides
• multiply or divide both sides by the same quantity.

Later, we shall see that a further group of operations is allowed, but first get some practice with
these Examples and Exercises.
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Example
Rearrange the formula y = x+ 8 in order to make x the subject instead of y.

Solution
To make x the subject we must remove the 8 from the right. So, we subtract 8 from the right,
but we remember that we must do the same to the left. So

if y = x+ 8, subtracting 8 yields

y − 8 = x+ 8 − 8

y − 8 = x

We have x on its own, although it is on the right. This is no problem since if y−8 equals x, then
x equals y − 8, that is x = y − 8. We have succeeded in making x the subject of the formula.

Example
Rearrange the formula y = 3x to make x the subject.

Solution
The reason why x does not appear on its own is that it is multiplied by 3. If we divide 3x by 3
we obtain 3x

3
= x. So, we can obtain x on its own by dividing both sides of the formula by 3.

y = 3x
y

3
=

3x

3
= x

Finally x = y
3

and we have succeeded in making x the subject of the formula.

Example
Rearrange y = 11 + 7x to make x the subject.

Solution
Starting from y = 11 + 7x we subtract 11 from each side to give y − 11 = 7x. Then, dividing
both sides by 7 gives y−11

7
= x. Finally x = y−11

7
.

Exercises
1. Transpose each of the following formulas to make x the subject.

a) y = x− 7, b) y = 2x− 7, c) y = 2x+ 7, d) y = 7 − 2x, e) y = x
5
.

2. Transpose each of the following formulas to make v the subject.

a) w = 3v, b) w = 1
3
v, c) w = v

3
, d) w = 2v

3
, e) w = 2

3
v.

Answers
1. a) x = y + 7, b) x = y+7

2
, c) x = y−7

2
, d) x = 7−y

2
, e) x = 5y.

2. a) v = w
3
, b) v = 3w, c) same as b), d) v = 3w

2
, e) same as d).
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Rearranging formulas 2
Introduction
This leaflet develops the work started in leaflet 2.10, and shows how more complicated formulas
can be rearranged.

1. Further transposition
Remember that when you are trying to rearrange, or transpose, a formula, the following
operations are allowed.

• Add or subtract the same quantity to or from both sides.
• Multiply or divide both sides by the same quantity.

A further group of operations is also permissible.

A formula remains balanced if we perform the same operation to both sides of it. For example,
we can square both sides, we can square-root both sides. We can find the logarithm of both
sides. Study the following examples.

Example
Transpose the formula p =

√
q to make q the subject.

Solution
Here we need to obtain q on its own. To do this we must find a way of removing the square root
sign. This can be achieved by squaring both sides since

(
√
q)2 = q

So,

p =
√
q

p2 = q by squaring both sides

Finally, q = p2, and we have succeeded in making q the subject of the formula.

Example
Transpose p =

√
a+ b to make b the subject.
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Solution

p =
√
a+ b

p2 = a+ b by squaring both sides

p2 − a = b

Finally, b = p2 − a, and we have succeeded in making b the subject of the formula.

Example
Make x the subject of the formula v = k√

x
.

Solution

v =
k√
x

v2 =
k2

x
by squaring both sides

xv2 = k2 by multiplying both sides by x

x =
k2

v2
by dividing both sides by v2

and we have succeeded in making x the subject of the formula.

Example
Transpose the formula T = 2π

√
�
g

for �.

Solution
This must be carried out carefully, in stages, until we obtain � on its own.

T = 2π

√
�

g

T

2π
=

√
�

g
by dividing both sides by 2π

(
T

2π

)2

=
�

g
by squaring both sides

� = g
(
T

2π

)2

Exercises
1. Make r the subject of the formula V = 4

3
πr3.

2. Make x the subject of the formula y = 4 − x2.

3. Make s the subject of the formula v2 = u2 + 2as.

Answers
1. r = 3

√
3V
4π

. 2. x = ±√
4 − y. 3. s = v2−u2

2a
.
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Solving linear equations
Introduction
Equations occur in all branches of engineering. They always involve one or more unknown
quantities which we try to find when we solve the equation. The simplest equations to deal
with are linear equations. In this leaflet we describe how these are solved.

1. A linear equation
Linear equations are those which can be written in the form

ax+ b = 0

where x is the unknown value, and a and b are known numbers. The following are all examples
of linear equations.

3x+ 2 = 0, −5x+ 11 = 0, 3x− 11 = 0

The unknown does not have to have the symbol x, other letters can be used.

3t− 2 = 0, 7z + 11 = 0, 3w = 0

are all linear equations.

Sometimes you will come across a linear equation which at first sight might not appear to have
the form ax + b = 0. The following are all linear equations. If you have some experience of
solving linear equations, or of transposing formulas, you will be able to check that they can all
be written in the standard form.

x− 7

2
+ 11 = 0,

2

x
= 8, 6x− 2 = 9

2. Solving a linear equation
To solve a linear equation it will be helpful if you know already how to transpose or rearrange
formulas. (See leaflets 2.10 & 2.11 Rearranging formulas for information about this if necessary.)

When solving a linear equation we try to make the unknown quantity the subject of the equation.
To do this we may

• add or subtract the same quantity to or from both sides
• multiply or divide both sides by the same quantity.
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Example
Solve the equation x+ 7 = 18.

Solution
We try to obtain x on its own on the left-hand side.

x+ 7 = 18

x = 18 − 7 by subtracting 7 from both sides

x = 11

We have solved the equation and found the solution: x = 11. The solution is that value of x
which can be substituted into the original equation to make both sides the same. You can, and
should, check this. Substituting x = 11 in the left-hand side of the equation x+ 7 = 18 we find
11 + 7 which equals 18, the same as the right-hand side.

Example
Solve the equation 5x+ 11 = 22.

Solution

5x+ 11 = 22

5x = 22 − 11 by subtracting 11 from both sides

x =
11

5
by dividing both sides by 5

Example
Solve the equation 13x− 2 = 11x+ 17.

Solution

13x− 2 = 11x+ 17

13x− 11x− 2 = 17 by subtracting 11x from both sides

2x− 2 = 17

2x = 17 + 2 by adding 2 to both sides

2x = 19

x =
19

2

Exercises
1. Solve the following linear equations.

a) 4x+ 8 = 0, b) 3x− 11 = 2, c) 8(x+ 3) = 64, d) 7(x− 5) = −56, e) 3c− 5 = 14c− 27.

Answers
1. a) x = −2, b) x = 13

3
, c) x = 5, d) x = −3, e) c = 2.
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Simultaneous equations

Introduction

On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time. In this
leaflet we illustrate one way in which this can be done.

1. The solution of a pair of simultaneous equations

The solution of the pair of simultaneous equations

3x+ 2y = 36, and 5x+ 4y = 64

is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.

2. Solving a pair of simultaneous equations

There are many ways of solving simultaneous equations. Perhaps the simplest way is elimina-
tion. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.

Example

Solve the simultaneous equations
3x+ 2y = 36 (1)
5x+ 4y = 64 (2)

.

Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation

6x+ 4y = 72 (3)

Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:

6x+ 4y = 72 − (3)
5x+ 4y = 64 (2)

x+ 0y = 8
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So, x = 8 is part of the solution. Taking equation (1) (or if you wish, equation (2)) we substitute
this value for x, which will enable us to find y:

3(8) + 2y = 36

24 + 2y = 36

2y = 36 − 24

2y = 12

y = 6

Hence the full solution is x = 8, y = 6.

You will notice that the idea behind this method is to multiply one (or both) equations by a
suitable number so that either the number of y’s or the number of x’s are the same, so that
subtraction eliminates that unknown. It may also be possible to eliminate an unknown by
addition, as shown in the next example.

Example

Solve the simultaneous equations
5x− 3y = 26 (1)
4x+ 2y = 34 (2)

.

Solution
There are many ways that the elimination can be carried out. Suppose we choose to eliminate
y. The number of y’s in both equations can be made the same by multiplying equation (1) by
2 and equation (2) by 3. This gives

10x− 6y = 52 (3)
12x+ 6y = 102 (4)

If these equations are now added we find

10x− 6y = 52 + (3)
12x+ 6y = 102 (4)

22x+ 0y = 154

so that x = 154
22

= 7. Substituting this value for x in equation (1) gives

5(7) − 3y = 26

35 − 3y = 26

−3y = 26 − 35

−3y = −9

y = 3

Hence the full solution is x = 7, y = 3.

Exercises
Solve the following pairs of simultaneous equations:

a)
7x+ y = 25
5x− y = 11

, b)
8x+ 9y = 3
x+ y = 0

, c)
2x+ 13y = 36
13x+ 2y = 69

, d)
7x− y = 15

3x− 2y = 19
.

Answers
a) x = 3, y = 4, b) x = −3, y = 3, c) x = 5, y = 2, d) x = 1, y = −8.
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Quadratic equations 1
Introduction
This leaflet will explain how many quadratic equations can be solved by factorisation.

1. Quadratic equations
A quadratic equation is an equation of the form ax2 + bx + c = 0, where a, b and c are
constants. For example, 3x2 + 2x− 9 = 0 is a quadratic equation with a = 3, b = 2 and c = −9.

The constants b and c can have any value including 0. The constant a can have any value except
0. This is to ensure that the equation has an x2 term. We often refer to a as the coefficient
of x2, to b as the coefficient of x and to c as the constant term. Usually, a, b and c are known
numbers, whilst x represents an unknown quantity which we will be trying to find.

2. The solutions of a quadratic equation
To solve a quadratic equation we must find values for x which when substituted into the equation
make the left-hand and right-hand sides equal. These values are also called roots. For example,
the value x = 4 is a solution of the equation x2 − 3x − 4 = 0 because substituting 4 for x we
find

42 − 3(4) − 4 = 16 − 12 − 4

which simplifies to zero, the same as the right-hand side of the equation. There are several
techniques which can be used to solve quadratic equations. One of these, factorisation, is
discussed in this leaflet. You should be aware that not all quadratic equations can be solved by
this method. An alternative method which uses a formula is described in leaflet 2.15.

3. Solving a quadratic equation by factorisation
Sometimes, but not always, it is possible to solve a quadratic equation using factorisation. If
you need to revise factorisation you should see leaflet 2.6 Factorising quadratics.

Example
Solve the equation x2 + 7x+ 12 = 0 by factorisation.

Solution
We first factorise x2 + 7x+ 12 as (x+ 3)(x+ 4). Then the equation becomes (x+ 3)(x+ 4) = 0.

It is important that you realise that if the product of two quantities is zero, then one or both of
the quantities must be zero. It follows that either

x+ 3 = 0, that is x = −3 or x+ 4 = 0, that is x = −4
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The roots of x2 + 7x+ 12 = 0 are x = −3 and x = −4.

Example
Solve the quadratic equation x2 + 4x− 21 = 0.

Solution
x2 + 4x− 21 can be factorised as (x+ 7)(x− 3). Then

x2 + 4x− 21 = 0

(x+ 7)(x− 3) = 0

Then either

x+ 7 = 0, that is x = −7 or x− 3 = 0, that is x = 3

The roots of x2 + 4x− 21 = 0 are x = −7 and x = 3.

Example
Find the roots of the quadratic equation x2 − 10x+ 25 = 0.

Solution

x2 − 10x+ 25 = (x− 5)(x− 5) = (x− 5)2

Then

x2 − 10x+ 25 = 0

(x− 5)2 = 0

x = 5

There is one root, x = 5. Such a root is called a repeated root.

Example
Solve the quadratic equation 2x2 + 3x− 2 = 0.

Solution
The equation is factorised to give

(2x− 1)(x+ 2) = 0

so, from 2x − 1 = 0 we find 2x = 1, that is x = 1
2
. From x + 2 = 0 we find x = −2. The two

solutions are therefore x = 1
2

and x = −2.

Exercises
1. Solve the following quadratic equations by factorisation.

a) x2 + 7x+ 6 = 0, b) x2 − 8x+ 15 = 0, c) x2 − 9x+ 14 = 0,

d) 2x2 − 5x− 3 = 0, e) 6x2 − 11x− 10 = 0, f) 6x2 + 13x+ 6 = 0.

Answers
a) −1,−6, b) 3, 5, c) 2, 7, d) 3,−1

2
, e) 5

2
,−2

3
, f) x = −3

2
, x = −2

3
.
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Quadratic equations 2
Introduction
This leaflet will explain how quadratic equations can be solved using a formula.

1. Solving a quadratic equation using a formula
Any quadratic equation can be solved using the quadratic formula.

If
ax2 + bx+ c = 0

then

x =
−b±

√
b2 − 4ac

2a

A quadratic equation has two solutions; one obtained using the positive square root in the
formula, and the other obtained using the negative square root. The answers are often referred
to as roots of the equation.

Example.

Solve the quadratic equation
3x2 + 9x+ 4 = 0

Solution
Here a = 3, b = 9 and c = 4. Putting these values into the quadratic formula gives

x =
−9 ±

√
92 − 4(3)(4)

2(3)

=
−9 ±

√
81 − 48

6

=
−9 ±

√
33

6

=
−9 −

√
33

6
,
−9 +

√
33

6
= −2.4574, −0.5426 (4dp)

The roots of 3x2 + 9x+ 4 = 0 are x = −2.4574 and x = −0.5426.
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Example
Solve the equation 8x2 + 3x− 4 = 0.

Solution
Care is needed here because the value of c is negative, that is c = −4.

x =
−3 ±

√
32 − 4(8)(−4)

(2)(8)

=
−3 ±

√
137

16
= 0.5440,−0.9190 (4dp)

Example
Find the roots of the quadratic equation 9x2 + 6x+ 1 = 0.

Solution
Here a = 9, b = 6 and c = 1. Using the quadratic formula we have

x =
−6 ±

√
62 − 4(9)(1)

2(9)

=
−6 ±

√
36 − 36

18

=
−6 ±

√
0

18

= − 6

18

= −1

3

In this example there is only one root: x = −1
3
.

The quantity b2 − 4ac is called the discriminant of the equation. When the discriminant is
0, as in the previous Example, the equation has only one root. If the discriminant is negative
we are faced with the problem of finding the square root of a negative number. Such equations
require special treatment using what are called complex numbers.

Exercises
1. Find the roots of the following quadratic equations:

a) x2 + 6x− 8 = 0, b) 2x2 − 8x− 3 = 0, c) −3x2 + x+ 1 = 0.

Answers
a) x = −3 ±

√
17 = 1.123,−7.123 (3dp),

b) x = 2 ±
√

22
2

= 4.345,−0.345 (3dp),

c) x = 1
6
±

√
13
6

= 0.768,−0.434 (3dp).
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Inequalities
Introduction
The inequality symbols < and > arise frequently in engineering mathematics. This leaflet revises
their meaning and shows how expressions involving them are manipulated.

1. The number line and inequality symbols
A useful way of picturing numbers is to use a number line. The figure shows part of this line.
Positive numbers are on the right-hand side of this line; negative numbers are on the left.

–4 –3 –2 –1 0 1 2 3 4

a b

Numbers can be represented on a number line. If a < b then equivalently, b > a.

The symbol > means ‘greater than’; for example, since 6 is greater than 4 we can write 6 > 4.
Given any number, all numbers to the right of it on the line are greater than the given number.
The symbol < means ‘less than’; for example, because −3 is less than 19 we can write −3 < 19.
Given any number, all numbers to the left of it on the line are less than the given number.

For any numbers a and b, note that if a is less than b, then b is greater than a. So the following
two statements are equivalent: a < b and b > a. So, for example, we can write 4 < 17 in the
equivalent form 17 > 4.

If a < b and b < c we can write this concisely as a < b < c. Similarly if a and b are both positive,
with b greater than a we can write 0 < a < b.

2. Rules for manipulating inequalities
To change or rearrange statements involving inequalities the following rules should be followed:

Rule 1. Adding or subtracting the same quantity from both sides of an inequality leaves the
inequality symbol unchanged.

Rule 2. Multiplying or dividing both sides by a positive number leaves the inequality symbol
unchanged.

Rule 3. Multiplying or dividing both sides by a negative number reverses the inequality.
This means < changes to >, and vice versa.

So,
if a < b then a+ c < b+ c using Rule 1
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For example, given that 5 < 7, we could add 3 to both sides to obtain 8 < 10 which is still true.

Also, using Rule 2,

if a < b and k is positive, then ka < kb

For example, given that 5 < 8 we can multiply both sides by 6 to obtain 30 < 48 which is still
true.

Using Rule 3
if a < b and k is negative, then ka > kb

For example, given 5 < 8 we can multiply both sides by −6 and reverse the inequality to obtain
−30 > −48, which is a true statement. A common mistake is to forget to reverse the inequality
when multiplying or dividing by negative numbers.

3. Solving inequalities
An inequality will often contain an unknown variable, x, say. To solve means to find all values
of x for which the inequality is true. Usually the answer will be a range of values of x.

Example
Solve the inequality 7x− 2 > 0.

Solution
We make use of the Rules to obtain x on its own. Adding 2 to both sides gives

7x > 2

Dividing both sides by the positive number 7 gives

x >
2

7

Hence all values of x greater than 2
7

satisfy 7x− 2 > 0.

Example
Find the range of values of x satisfying x− 3 < 2x+ 5.

Solution
There are many ways of arriving at the correct answer. For example, adding 3 to both sides:

x < 2x+ 8

Subtracting 2x from both sides gives
−x < 8

Multiplying both sides by −1 and reversing the inequality gives x > −8. Hence all values of
x greater than −8 satisfy x− 3 < 2x+ 5.

Exercises
In each case solve the given inequality.

1. 2x > 9, 2. x+ 5 > 13, 3. −3x < 4, 4. 7x+ 11 > 2x+ 5, 5. 2(x+ 3) < x+ 1

Answers
1. x > 9/2, 2. x > 8, 3. x > −4/3, 4. x > −6/5, 5. x < −5.
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The modulus symbol
Introduction
Inequalities often arise in connection with the modulus symbol. This leaflet describes how.

1. The modulus symbol
The modulus symbol is sometimes used in conjunction with inequalities. For example, |x| < 1
means all numbers whose actual size, irrespective of sign, is less than 1. This means any value
between −1 and 1. Thus

|x| < 1 means − 1 < x < 1

Similarly, |y| > 2 means all numbers whose actual size, irrespective of sign, is greater than 2.
This means any value greater than 2 and any value less than −2. Thus

|y| > 2 means y > 2 or y < −2

Example
Solve the inequality |2x+ 1| < 3.

Solution
This is equivalent to −3 < 2x+ 1 < 3. We treat both parts of the inequality separately.

First consider
−3 < 2x+ 1

Solving this yields x > −2.

Now consider the second part, 2x+ 1 < 3. Solving this yields x < 1.

Putting both results together we see that −2 < x < 1 is the required solution.

Exercises
In each case solve the given inequality.

1. |3x| < 1. 2. |12y + 2| > 5. 3. |1 − y| < 3.

Answers
1. −1

3
< x < 1

3
. 2. y > 1

4
and y < − 7

12
. 3. −2 < y < 4.
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Graphical solution of
inequalities

Introduction
Graphs can be used to solve inequalities. This leaflet illustrates how.

1. Solving inequalities
We start with a very simple example which could be solved very easily using an algebraic method.

Example
Solve the inequality x+ 3 > 0.

Solution
We seek values of x which make x + 3 positive. There are many such values, e.g. try x = 7
or x = −2. To find all values first let y = x + 3. Then the graph of y = x + 3 is sketched as
shown below. From the graph we see that the y coordinate of any point on the line is positive
whenever x has a value greater than −3. That is, y > 0 when x > −3. But y = x + 3, so we
can conclude that x + 3 will be positive when x > −3. We have used the graph to solve the
inequality.

y is positive when
x is greater than −3

−3

3

y is positive when
x is less than −1
and when x is
greater than 3

−1 3

y = x + 3

y = x2 − 2x − 3

x

y y

x

Example
Solve the inequality x2 − 2x− 3 > 0.

Solution
We seek values of x which make x2 − 2x− 3 positive. We can find these by sketching a graph of
y = x2−2x−3. To help with the sketch, note that by factorising we can write y as (x+1)(x−3).
The graph will cross the horizontal axis when x = −1 and when x = 3. The graph is shown
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above on the right. From the graph note that the y coordinate of a point on the graph is positive
when either x is greater than 3 or when x is less than −1. That is, y > 0 when x > 3 or x < −1
and so:

x2 − 2x− 3 > 0 when x > 3 or x < −1

Example
Solve the inequality (x− 1)(x− 2)(x− 3) > 0.

Solution
We consider the graph of y = (x − 1)(x − 2)(x − 3) which is shown below. It is evident from
the graph that y is positive when x lies between 1 and 2 and also when x is greater than 3. The
solution of the inequality is therefore 1 < x < 2 and x > 3.

y is positive when
x lies between 1 and 2
and when x is greater than 3

y = (x − 1)(x − 2)(x − 3)

y

x321

Example
For what values of x is x+3

x−7
positive?

Solution
The graph of y = x+3

x−7
is shown below. We can see that the y coordinate of a point on the graph

is positive when x < −3 or when x > 7.

x+ 3

x− 7
> 0 when x < −3 or when x > 7

y is positive when x is
less than −3 and when x is greater
than 7

y = x+3
x−7

y

x

x = −3

x = 7

5 10−5

1

For drawing graphs like this one a graphical calculator is useful.
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What is a logarithm?
Introduction
We use logarithms to write expressions involving powers in a different form. If you can work
confidently with powers you should have no problems handling logarithms.

1. Logarithms
Consider the statement

100 = 102

In this statement we say that 10 is the base and 2 is the power or index.

Logarithms are simply an alternative way of writing a statement such as this. We rewrite it
as

log10 100 = 2

This is read as ‘log to the base 10 of 100 is 2’.

As another example, since
25 = 32

we can write
log2 32 = 5

More generally,

if a = bc, then logb a = c

The only restriction that is placed on the value of the base is that it is a positive real number
excluding the number 1. In practice logarithms are calculated using only a few common bases.
Most frequently you will meet bases 10 and e. The letter e stands for the number 2.718... and is
used because it is found to occur in the mathematical description of many physical phenomena.
Your calculator will be able to calculate logarithms to bases 10 and e. Usually the ‘log’ button
is used for base 10, and the ‘ln’ button is used for base e. (‘ln’ stands for ‘natural logarithm’.)
Check that you can use your calculator correctly by verifying that

log10 73 = 1.8633 and loge 5.64 = 1.7299

You may also like to verify the alternative forms

101.8633 = 73 and e1.7299 = 5.64

Occasionally we need to find logarithms to other bases. For example, logarithms to the base 2
are used in communications engineering and information technology. Your calculator can still
be used but we need to apply a formula for changing the base. This is dealt with in the leaflet
2.21 Bases other than 10 and e.
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The laws of logarithms
Introduction
There are a number of rules known as the laws of logarithms. These allow expressions
involving logarithms to be rewritten in a variety of different ways. The laws apply to logarithms
of any base but the same base must be used throughout a calculation.

1. The laws of logarithms
The three main laws are stated here:

First Law
logA+ logB = logAB

This law tells us how to add two logarithms together. Adding logA and logB results in the
logarithm of the product of A and B, that is logAB.

For example, we can write

log10 5 + log10 4 = log10(5 × 4) = log10 20

The same base, in this case 10, is used throughout the calculation. You should verify this by
evaluating both sides separately on your calculator.

Second Law

logA− logB = log
A

B

So, subtracting logB from logA results in log A
B

.

For example, we can write

loge 12 − loge 2 = loge

12

2
= loge 6

The same base, in this case e, is used throughout the calculation. You should verify this by
evaluating both sides separately on your calculator.

Third Law
logAn = n logA

So, for example
log10 53 = 3 log10 5

You should verify this by evaluating both sides separately on your calculator.

Two other important results are
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log 1 = 0, logmm = 1

The logarithm of 1 to any base is always 0, and the logarithm of a number to the same base is
always 1. In particular,

log10 10 = 1, and loge e = 1

Exercises
1. Use the first law to simplify the following.

a) log10 6 + log10 3,

b) log x+ log y,

c) log 4x+ log x,

d) log a+ log b2 + log c3.

2. Use the second law to simplify the following.

a) log10 6 − log10 3,

b) log x− log y,

c) log 4x− log x.

3. Use the third law to write each of the following in an alternative form.

a) 3 log10 5,

b) 2 log x,

c) log(4x)2,

d) 5 lnx4,

e) ln 1000.

4. Simplify 3 log x− log x2.

Answers
1. a) log10 18, b) log xy, c) log 4x2, d) log ab2c3.

2. a) log10 2, b) log x
y
, c) log 4.

3. a) log10 53 or log10 125, b) log x2, c) 2 log(4x), d) 20 lnx or lnx20,
e) 1000 = 103 so ln 1000 = 3 ln 10.

4. log x.
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Bases other than 10 and e
Introduction
Occasionally you may need to find logarithms to bases other than 10 and e. For example,
logarithms to the base 2 are used in communications engineering and information technology.
Your calculator can still be used but we need to apply a formula for changing the base. This
leaflet gives this formula and shows how to use it.

1. A formula for change of base
Suppose we want to calculate a logarithm to base 2. The formula states

log2 x =
log10 x

log10 2

So we can calculate base 2 logarithms using base 10 logarithms obtained using a calculator. For
example

log2 36 =
log10 36

log10 2
=

1.556303

0.301030
= 5.170 (3dp)

Check this for yourself.

More generally, for any bases a and b,

loga x =
logb x

logb a

In particular, by choosing b = 10 we find

loga x =
log10 x

log10 a

Use this formula to check that log20 100 = 1.5372.

Exercises
1. Find a) log2 15, b) log2 56.25, c) log3 16.

Answers
1. a) 3.907 (3dp), b) 5.814 (3dp), c) 2.524 (3dp).
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Sigma notation
Introduction
Sigma notation,

∑
, provides a concise and convenient way of writing long sums. This leaflet

explains how.

1. Sigma notation
The sum

1 + 2 + 3 + 4 + 5 + . . .+ 10 + 11 + 12

can be written very concisely using the capital Greek letter
∑

as

k=12∑
k=1

k

The
∑

stands for a sum, in this case the sum of all the values of k as k ranges through all whole
numbers from 1 to 12. Note that the lower-most and upper-most values of k are written at the
bottom and top of the sigma sign respectively. You may also see this written as

∑k=12
k=1 k, or

even as
∑12

k=1 k.

Example
Write out explicitly what is meant by

k=5∑
k=1

k3

Solution
We must let k range from 1 to 5, cube each value of k, and add the results:

k=5∑
k=1

k3 = 13 + 23 + 33 + 43 + 53

Example
Express 1

1
+ 1

2
+ 1

3
+ 1

4
concisely using sigma notation.

Solution
Each term takes the form 1

k
where k varies from 1 to 4. In sigma notation we could write this

as
k=4∑
k=1

1

k
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Example
The sum

x1 + x2 + x3 + x4 + . . .+ x19 + x20

can be written
k=20∑
k=1

xk

There is nothing special about using the letter k. For example

n=7∑
n=1

n2 stands for 12 + 22 + 32 + 42 + 52 + 62 + 72

We can also use a little trick to alternate the signs of the numbers between + and −. Note that
(−1)2 = 1, (−1)3 = −1 and so on.

Example
Write out fully what is meant by

5∑
i=0

(−1)i+1

2i+ 1

Solution

5∑
i=0

(−1)i+1

2i+ 1
= −1 +

1

3
− 1

5
+

1

7
− 1

9
+

1

11

Exercises

1. Write out fully what is meant by

a)
∑i=5

i=1 i
2,

b)
∑4

k=1(2k + 1)2,

c)
∑4

k=0(2k + 1)2.

2. Write out fully what is meant by
k=3∑
k=1

(x̄− xk)

3. Sigma notation is often used in statistical calculations. For example the mean, x̄, of the n
quantities x1, x2 . . . xn is found by adding them up and dividing the result by n. Show that
the mean can be written as

x̄ =

∑n
i=1 xi
n

4. Write out fully what is meant by
∑4

i=1
i

i+1
.

5. Write out fully what is meant by
∑3

k=1
(−1)k

k
.

Answers
1. a) 12 + 22 + 32 + 42 + 52, b) 32 + 52 + 72 + 92, c) 12 + 32 + 52 + 72 + 92.

2. (x̄−x1)+(x̄−x2)+(x̄−x3). 4. 1
2
+ 2

3
+ 3

4
+ 4

5
. 5. −1

1
+ 1

2
+ −1

3
which equals −1+ 1

2
− 1

3
.
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Partial fractions 1
Introduction
An algebraic fraction can often be rewritten as the sum of simpler fractions that are called
partial fractions. For example, it can be shown that

8x− 12

x2 − 2x− 3
can be written in partial fractions as

3

x− 3
+

5

x+ 1

This leaflet explains the procedure for finding partial fractions.

1. Proper and improper fractions
When the degree of the numerator, that is the highest power on top, is less than the degree of
the denominator, that is the highest power on the bottom, the fraction is said to be proper.
The fraction

8x− 12

x2 − 2x− 3

satisfies this condition and so is proper.

If a fraction is not proper it is said to be improper. For example, the fraction

2x3 + 7x

x2 + x+ 1

is improper because the degree of the numerator, 3, is greater than the degree of the denominator,
2.

The first stage in the process of finding partial fractions is to determine whether the fraction is
proper or improper because proper fractions are simpler to deal with. Improper fractions are
dealt with in leaflet 2.25.

2. Finding partial fractions of proper fractions
You should carry out the following steps:

Step 1

Factorise the denominator if it is not already factorised.

Step 2

When you have factorised the denominator the factors can take various forms. You must study
these forms carefully. For example, you may find

(3x+ 2)(x+ 1)
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These factors are both referred to as linear factors. Generally a linear factor has the form
ax+ b where a and b are numbers.

The factors could be the same, as in

(3x+ 2)(3x+ 2) that is (3x+ 2)2

This is called a repeated linear factor. Generally, such a factor has the form (ax+ b)2.

Another possible form is
x2 + x+ 1

This is a quadratic factor which cannot be factorised into linear factors. Generally such a
factor has the form ax2 + bx+ c.

It is essential that you examine the factors carefully to see which type you have. The form that
the partial fractions take depends upon the type of factors obtained.

You should examine the factors of the denominator to decide which sorts of partial fraction you
will need. These are summarised in the following box.

Each linear factor, ax+ b, produces a partial fraction of the form

A

ax+ b

where A represents an unknown constant which must be found.

A repeated linear factor, (ax+ b)2, produces two partial fractions of the form

A

ax+ b
+

B

(ax+ b)2

where A and B represent two unknown constants which must be found.

A quadratic factor ax2 + bx + c, which cannot be factorised, produces a partial fraction of
the form

Ax+B

ax2 + bx+ c

Step 3

Find the unknown constants, A, B, . . . This is done using a method known as equating coef-
ficients, or by substituting specific values for x, or by a mixture of both methods.

These three steps are illustrated in the examples in leaflet 2.24.
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Partial fractions 2
1. Worked examples

Example

Express
5x− 4

x2 − x− 2
as the sum of its partial fractions.

Solution
First we factorise the denominator: x2 − x− 2 = (x+ 1)(x− 2). Next, examine the form of the
factors. The factor (x + 1) is a linear factor and produces a partial fraction of the form A

x+1
.

The factor (x− 2) is also a linear factor, and produces a partial fraction of the form B
x−2

. Hence

5x− 4

x2 − x− 2
=

5x− 4

(x+ 1)(x− 2)
=

A

x+ 1
+

B

x− 2
(1)

where A and B are constants which must be found. Finally we find the constants. Writing the
right-hand side using a common denominator we have

5x− 4

(x+ 1)(x− 2)
=
A(x− 2) +B(x+ 1)

(x+ 1)(x− 2)

The denominators on both sides are the same, and so the numerators on both sides must be the
same too. Thus

5x− 4 = A(x− 2) +B(x+ 1) (2)

We shall first demonstrate how to find A and B by substituting specific values for x. By
appropriate choice of the value for x, the right-hand side of Equation 2 can be simplified. For
example, letting x = 2 we find 6 = A(0) +B(3), so that 6 = 3B, that is B = 2. Then by letting
x = −1 in Equation 2 we find −9 = A(−3) + B(0), from which −3A = −9, so that A = 3.
Substituting these values for A and B into Equation 1 gives

5x− 4

x2 − x− 2
=

3

x+ 1
+

2

x− 2

The constants can also be found by equating coefficients. From Equation 2 we have

5x− 4 = A(x− 2) +B(x+ 1)

= Ax− 2A+Bx+B

= (A+B)x+B − 2A
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Comparing the coefficients of x on the left- and right-hand sides gives 5 = A + B. Comparing
the constant terms gives −4 = B−2A. These simultaneous equations in A and B can be solved
to find A = 3 and B = 2 as before. Often a combination of the two methods is needed.

Example

Express
2x2 + 3

(x+ 2)(x+ 1)2
in partial fractions.

Solution
The denominator is already factorised. Note that there is a linear factor (x+ 2) and a repeated
linear factor (x+ 1)2. So we can write

2x2 + 3

(x+ 2)(x+ 1)2
=

A

x+ 2
+

B

x+ 1
+

C

(x+ 1)2
(3)

The right-hand side is now written over a common denominator to give

2x2 + 3

(x+ 2)(x+ 1)2
=
A(x+ 1)2 +B(x+ 2)(x+ 1) + C(x+ 2)

(x+ 2)(x+ 1)2

Therefore

2x2 + 3 = A(x+ 1)2 +B(x+ 2)(x+ 1) + C(x+ 2) (4)

A and C can be found by substituting values for x which simplify the right-hand side. For
example if x = −1 we find 2(−1)2 + 3 = A(0) + B(0) + C from which C = 5. Similarly if we
choose x = −2 we find 8 + 3 = A(−1)2 + B(0) + C(0) so that A = 11. To find B we shall use
the method of equating coefficients, although we could equally have substituted any other
value for x. To equate coefficients we remove the brackets on the right-hand side of Equation 4.
After collecting like terms we find that Equation 4 can be written

2x2 + 3 = (A+B)x2 + (2A+ 3B + C)x+ (A+ 2B + 2C)

By comparing the coefficients of x2 on both sides we see that (A + B) must equal 2. Since we
already know A = 11, this means B = −9. Finally substituting our values of A, B and C into

Equation 3 we have
2x2 + 3

(x+ 2)(x+ 1)2
=

11

x+ 2
− 9

x+ 1
+

5

(x+ 1)2
.

Exercises
1. Show that x−1

6x2+5x+1
= 3

2x+1
− 4

3x+1
. 2. Show that s+4

s2+s
= 4

s
− 3

s+1
.

3. The fraction
5x2 + 4x+ 11

(x2 + x+ 4)(x+ 1)
has a quadratic factor in the denominator which cannot be

factorised. Thus the required form of the partial fractions is

5x2 + 4x+ 11

(x2 + x+ 4)(x+ 1)
=

Ax+B

x2 + x+ 4
+

C

x+ 1

Show that
5x2 + 4x+ 11

(x2 + x+ 4)(x+ 1)
=

2x− 1

x2 + x+ 4
+

3

x+ 1
.
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Partial fractions 3
Introduction
This leaflet describes how the partial fractions of an improper fraction can be found.

1. Partial fractions of improper fractions
An algebraic fraction is improper if the degree (highest power) of the numerator is greater than
or equal to that of the denominator. Suppose we let d equal the degree of the denominator, and
n the degree of the numerator. Then, in addition to the partial fractions arising from factors in
the denominator we must include an additional term: this additional term is a polynomial of
degree n− d.
Note that:

a polynomial of degree 0 is: A, a constant

a polynomial of degree 1 is: Ax+B

a polynomial of degree 2 is: Ax2 +Bx+ C,

and so on.

Example

Express
3x2 + 2x

x+ 1
as partial fractions.

Solution
This fraction is improper because n = 2 and d = 1 and so n ≥ d. We must include a polynomial
of degree n − d = 1 as well as the normal partial fractions arising from the factors of the
denominator. Thus

3x2 + 2x

x+ 1
= Ax+B +

C

x+ 1

Writing the right-hand side over a common denominator gives

3x2 + 2x

x+ 1
=

(Ax+B)(x+ 1) + C

x+ 1

and so

3x2 + 2x = (Ax+B)(x+ 1) + C
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As before we can equate coefficients or substitute values for x to find

C = 1, A = 3, and B = −1

Finally

3x2 + 2x

x+ 1
= 3x− 1 +

1

x+ 1

Example

Express
s2 + 2s+ 1

s2 + s+ 1
in partial fractions.

Solution
Here n = 2, and d = 2. The fraction is therefore improper, with n− d = 0. We must include a
polynomial of degree 0, that is a constant, in addition to the usual partial fractions arising from
the factors of the denominator. In this example the denominator will not factorise and so this
remains a quadratic factor. So,

s2 + 2s+ 1

s2 + s+ 1
= A+

Bs+ C

s2 + s+ 1

Writing the right-hand side over a common denominator gives

s2 + 2s+ 1

s2 + s+ 1
=
A(s2 + s+ 1) + (Bs+ C)

s2 + s+ 1

and so
s2 + 2s+ 1 = A(s2 + s+ 1) + (Bs+ C)

Equating coefficients of s2 shows that A = 1. Equating coefficients of s shows that B = 1, and
you should check that C = 0. Hence

s2 + 2s+ 1

s2 + s+ 1
= 1 +

s

s2 + s+ 1

Exercises

1. Show that
x4 + 2x3 − 2x2 + 4x− 1

x2 + 2x− 3
= x2 + 1 +

1

x+ 3
+

1

x− 1

2. Show that
4x3 + 12x2 + 13x+ 7

4x2 + 4x+ 1
= x+ 2 +

2

2x+ 1
+

3

(2x+ 1)2

3. Show that
6x3 + x2 + 5x− 1

x3 + x
= 6 − 1

x
+

2x− 1

x2 + 1
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Completing the square
Introduction
In this leaflet we explain a procedure called completing the square. This can be used to solve
quadratic equations, and is also important in the calculation of some integrals and when it is
necessary to find inverse Laplace transforms.

1. Perfect squares
Some quadratic expressions are perfect squares. For example

x2 − 6x+ 9 can be written as (x− 3)2

The equivalence of this pair of expressions is easily verified by squaring (x− 3), as in

(x− 3)(x− 3) = x2 − 3x− 3x+ 9 = x2 − 6x+ 9

Similarly, x2 + 14x + 49 can be written as (x + 7)2. Both x2 − 6x + 9 and x2 + 14x + 49 are
perfect squares because they can be written as the square of another expression.

2. Completing the square
In general, a quadratic expression cannot be written in the form (∗ ∗ ∗)2 and so will not be a
perfect square. Often, the best we can do is to write a quadratic expression as a perfect square,
plus or minus some constant. Doing this is called completing the square.

Example
Show that x2 + 8x+ 7 can be written as (x+ 4)2 − 9.

Solution
Squaring the term (x+ 4) we find

(x+ 4)2 = (x+ 4)(x+ 4)

= x2 + 8x+ 16

So

(x+ 4)2 − 9 = x2 + 8x+ 16 − 9

= x2 + 8x+ 7

We have shown that x2 + 8x + 7 can be written as a perfect square minus a constant, that is
(x+ 4)2 − 9. We have completed the square.

The following result may help you complete the square, although with practice it is easier to do
this by inspection.

2.26.1 copyright c© Pearson Education Limited, 2000



x2 + kx+ c = (x+
k

2
)2 − k2

4
+ c

You can verify this is true by squaring the term in brackets and simplifying the right-hand side.

Example
Complete the square for the expression x2 + 6x+ 2.

Solution
Comparing x2 + 6x+ 2 with the general form in the box we note that k = 6 and c = 2. Then

x2 + 6x+ 2 = (x+
6

2
)2 − 62

4
+ 2

= (x+ 3)2 − 7

and we have completed the square.

Example
Complete the square for the expression x2 − 7x+ 3.

Solution
Comparing x2 − 7x+ 3 with the general form in the box we note that k = −7 and c = 3. Then

x2 − 7x+ 3 = (x+
−7

2
)2 − (−7)2

4
+ 3

= (x− 7

2
)2 − 49

4
+ 3

= (x− 7

2
)2 − 37

4

and we have completed the square.

Exercises
1. Complete the square for a) x2 − 8x+ 5, b) x2 + 12x− 7.

2. Completing the square can be used in the solution of quadratic equations. Complete the
square for x2 + 8x+ 1 and use your result to solve the equation x2 + 8x+ 1 = 0.

3. By first extracting a factor of 3, complete the square for 3x2 + 6x+ 11.

Answers
1. a) (x− 4)2 − 11, b) (x+ 6)2 − 43.

2. (x+ 4)2 − 15. Hence the equation can be written (x+ 4)2 − 15 = 0 from which (x+ 4)2 = 15,
(x+ 4) = ±

√
15 and finally x = −4 ±

√
15.

3. 3x2 + 6x+ 11 = 3[x2 + 2x+ 11
3
] = 3[(x+ 1)2 + 8

3
].
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What is a surd?
Introduction
In engineering calculations, numbers are often given in surd form. This leaflet explains what
is meant by surd form, and gives some circumstances in which surd forms arise.

1. Surd form
Suppose we wish to simplify

√
1
4
. We can write it as 1

2
. On the other hand, some numbers

involving roots, such as
√

2,
√

3, 3
√

6 cannot be expressed exactly in the form of a fraction. Any
number of the form n

√
a, which cannot be written as a fraction of two integers is called a surd.

Whilst numbers like
√

2 have decimal approximations which can be obtained using a calculator,
e.g

√
2 = 1.414 . . . , we emphasise that these are approximations, whereas the form

√
2 is

exact.

2. Writing surds in equivalent forms
It is often possible to write surds in equivalent forms. To do this you need to be aware that

√
a× b =

√
a×

√
b

However, be warned that
√
a+ b is not equal to

√
a+

√
b.

For example
√

48 can be written

√
3 × 16 =

√
3 ×

√
16 = 4

√
3

Similarly,
√

60 can be written

√
4 × 15 =

√
4 ×

√
15 = 2

√
15

3. Applications
Surds arise naturally in a number of applications. For example, by using Pythagoras’ theorem
we find the length of the hypotenuse of the triangle shown below to be

√
2.

1

√
2

1
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Surds arise in the solution of quadratic equations using the formula. For example, the solution
of x2 + 8x+ 1 = 0 is obtained as

x =
−8 ±

√
82 − 4(1)(1)

2

=
−8 ±

√
60

2

=
−8 ±

√
4 × 15

2

=
−8 ± 2

√
15

2

= −4 ±
√

15

This answer has been left in surd form.

Exercises
1. Write the following in their simplest forms.

a)
√

63, b)
√

180.

2. By multiplying numerator and denominator by
√

2 + 1 show that

1√
2 − 1

is equivalent to
√

2 + 1

The process of rewriting a fraction in this way, so that all surds appear in the numerator only,
is called rationalisation.

3. Rationalise the denominator of a) 1√
2
, b) 1√

5
.

4. Simplify
√

18 − 2
√

2 +
√

8.

Answers
1. a) 3

√
7, b) 6

√
5. 3. a)

√
2

2
, b)

√
5

5
. 4. 3

√
2.
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What is a function?
Introduction
A quantity whose value can change is known as a variable. Functions are used to describe
the rules which define the ways in which such a change can occur. The purpose of this leaflet is
to explain functions and their notation.

1. The function rule
A function is a rule which operates on an input and produces an output. This can be illus-
trated using a block diagram such as that shown below. We can think of the function as a
mathematical machine which processes the input, using a given rule, in order to produce an
output. We often write the rule inside the box.

input outputrule

function

In order for a rule to be a function it must produce only a single output for any given input.
The function with the rule ‘double the input’ is shown below.

4 8

f

2x

f

x

double
the input

double
the input

Note that with an input of 4 the function would produce an output of 8. With a more general
input, x say, the output will be 2x. It is usual to assign a letter or other symbol to a function
in order to label it. The doubling function pictured in the example above has been given the
symbol f .

A function is a rule which operates on an input and produces a single output from that input.

For the doubling function it is common to use the notation

f(x) = 2x

This indicates that with an input x, the function, f , produces an output of 2x. The input to
the function is placed in the brackets after the function label ‘f ’. f(x) is read as ‘f is a function
of x’, or simply ‘f of x’, meaning that the output from the function depends upon the value of
the input x.
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Example
State the rule of each of the following functions:

a) f(x) = 7x+ 9, b) h(t) = t3 + 2, c) p(x) = x3 + 2.

Solution
a) The rule for f is ‘multiply the input by 7 and then add 9’.

b) The rule for h is ‘cube the input and add 2’.

c) The rule for p is ‘cube the input and add 2’.

Note from parts b) and c) that it is the rule that is important when describing a function and
not the letters being used. Both h(t) and p(x) instruct us to ‘cube the input and add 2’.

The input to a function is called its argument. We can obtain the output from a function if
we are given its argument. For example, given the function f(x) = 3x + 2 we may require the
value of the output when the argument is 5. We write this as f(5). Here, f(5) = 3× 5+2 = 17.

Example
Given the function f(x) = 4x+ 3 find a) f(−1), b) f(6).

Solution
a) Here the argument is −1. We find f(−1) = 4 × (−1) + 3 = −1.

b) f(6) = 4(6) + 3 = 27.

Sometimes the argument will be an algebraic expression, as in the following example.

Example
Given the function y(x) = 5x− 3 find

a) y(t), b) y(7t), c) y(z + 2).

Solution
The function rule is multiply the input by 5, and subtract 3. We can apply this rule whatever
the argument.

a) To find y(t) multiply the argument, t, by 5 and subtract 3 to give y(t) = 5t− 3.

b) Now the argument is 7t. So y(7t) = 5(7t) − 3 = 35t− 3.

c) In this case the argument is z + 2. We find y(z + 2) = 5(z + 2) − 3 = 5z + 10 − 3 = 5z + 7.

Exercises
1. Write down a function which can be used to describe the following rules:

a) ‘cube the input and divide the result by 2’, b) ‘divide the input by 5 and then add 7’.

2. Given the function f(x) = 7x− 3 find a) f(3), b) f(6), c) f(−2).

3. If g(t) = t2 write down expressions for a) g(x), b) g(3t), c) g(x+ 4).

Answers
1. a) f(x) = x3

2
, b) f(x) = x

5
+ 7. 2. a) 18, b) 39, c) −17.

3. a) g(x) = x2, b) g(3t) = (3t)2 = 9t2, c) g(x+ 4) = (x+ 4)2 = x2 + 8x+ 16.
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✌3.2

The graph of a function
Introduction
A very useful pictorial representation of a function is the graph. In this leaflet we remind you
of important conventions when graph plotting.

1. The graph of a function
Consider the function f(x) = 5x+ 4.

We can choose several values for the input and calculate the corresponding outputs. We have
done this for integer values of x between −3 and 3 and the results are shown in the table.

x −3 −2 −1 0 1 2 3
f(x) −11 −6 −1 4 9 14 19

To plot the graph we first draw a pair of axes – a vertical axis and a horizontal axis. These are
drawn at right-angles to each other and intersect at the origin O as shown below.

–3 –2 –1 1 2 3

5

10

15

O

–5

–10

x

y = 5x + 4

y = f(x)

The point with coordinates (2, 14)

vertical axis

horizontal axis

Each pair of input and output values can be represented on a graph by a single point. The
input values are measured along the horizontal axis and the output values along the vertical
axis. A uniform scale is drawn on each axis sufficient to accommodate all the required points.
The points plotted in this way are then joined together, in this case by a straight line. This is
the graph of the function. Each point on the graph can be represented by a pair of coordinates
in the form (x, f(x)). Each axis should be labelled to show its variable.

2. Dependent and independent variables
The horizontal axis is often called the x axis. The vertical axis is commonly referred to as the
y axis. So, we often write the function above, not as f(x) = 5x+ 4, but rather as

y = 5x+ 4
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Since x and y can have a number of different values they are variables. Here x is called the
independent variable and y is called the dependent variable. Knowing or choosing a value
of the independent variable, x, the function allows us to calculate the corresponding value of
the dependent variable, y. To show this dependence we often write y(x). This notation simply
means that y depends upon x. Note that it is the independent variable which is the input to
the function and the dependent variable which is the output.

Example
Consider the function given by y = 2t2 + 1, for values of t between −2 and 2.

a) State the independent variable.

b) State the dependent variable.

c) Plot a graph of the function.

Solution
a) The independent variable is t.

b) The dependent variable is y.

c) A table of input and output values should be constructed first. Such a table is shown below.

t −2 −1 0 1 2
y 9 3 1 3 9

Each pair of t and y values in the table is plotted as a single point. The points are then joined
with a smooth curve to produce the required graph as shown below.

− 2 − 1 0

1

2

5

y = 2t2 + 1

y

t1

Exercises
1. Plot a graph of each of the following functions. In each case state the dependent and
independent variables.

a) y = f(x) = 3x+ 2, for x between −2 and 5, b) y = f(t) = 6− t2, for t between 1 and 5.

Answers
1. a) dependent variable is y, independent variable is x.

b) dependent variable is y, independent variable is t.
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✌3.3

The straight line
Introduction
Straight line graphs arise in many engineering applications. This leaflet discusses the mathemat-
ical equation which describes a straight line and explains the terms ‘gradient’ and ‘intercept’.

1. The equation of a straight line

Any equation of the form
y = mx+ c

where m and c are fixed numbers, (i.e. constants), has a graph which is a straight line.

For example,

y = 3x+ 5, y =
2

3
x+ 8 and y = −3x− 7

all have graphs which are straight lines, but

y = 3x2 + 4, y =
2

3x
− 7, and y = −14

√
x

have graphs which are not straight lines. The essential feature of a straight line equation is that
x and y occur only to the power 1.

2. The straight line graph
Any straight line graph can be plotted very simply by finding just two points which lie on the
line and joining them. It is a good idea to find a third point just as a check.

Example
Plot a graph of the straight line with equation y = 5x+ 4.

Solution
From the equation, note that when x = 0, the value of y is 4. Similarly when x = 3, y = 19. So
the points (0, 4) and (3, 19) lie on the graph. These points are plotted and joined together to
form the straight line graph.

y

x

5

10

15

− 1− 2− 3 1 2 3

the point with coordinates (3, 19)

the point with coordinates (0, 4)

y = 5x + 4
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3. The gradient and intercept of a straight line

In the equation y = mx+ c the value of m is called the gradient of the line. It can be positive,
negative or zero. Lines with a positive gradient slope upwards, from left to right. Lines with a
negative gradient slope downwards from left to right. Lines with a zero gradient are horizontal.

y

x

this line has a positive gradient this line has a negative gradient the gradient of this line is zero
y y

x x

The value of c is called the vertical intercept of the line. It is the value of y when x = 0.
When drawing a line, c gives the position where the line cuts the vertical axis.

xx
the vertical intercept is negative

y

the vertical intercept is positive

y

Example
Determine the gradient and vertical intercept of each line.

a) y = 12x− 6, b) y = 5 − 2x, c) 4x− y + 13 = 0, d) y = 8, e) y = 4x.

Solution
a) Comparing y = 12x − 6 with y = mx + c we see that m = 12, so the gradient of the line is
12. The fact that this is positive means that the line slopes upwards as we move from left to
right. The vertical intercept is −6. This line cuts the vertical axis below the horizontal axis.

b) Comparing y = 5− 2x with y = mx+ c we see that m = −2, so the gradient is −2. The line
slopes downwards as we move from left to right. The vertical intercept is 5.

c) We write 4x− y + 13 = 0 in standard form as y = 4x+ 13 and note that m = 4, c = 13.

d) Comparing y = 8 with y = mx+ c we see that m = 0 and c = 8. This line is horizontal.

e) Comparing y = 4x with y = mx+ c we see that m = 4 and c = 0.

Exercises
1. State the gradient and intercept of each of the following lines.

a) y = 5x+ 6, b) y = 3x− 11, c) y = −2x+ 7, d) y = 9, e) y = 7 − x.

Answers
1. a) gradient 5, intercept 6 b) 3,−11, c) −2,7, d) 0,9, e) −1, 7.
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The exponential constant e

Introduction

The letter e is used in many mathematical calculations to stand for a particular number known
as the exponential constant. This leaflet provides information about this important constant,
and the related exponential function.

1. The exponential constant

The exponential constant is an important mathematical constant and is given the symbol e.
Its value is approximately 2.718. It has been found that this value occurs so frequently when
mathematics is used to model physical and chemical phenomena that it is convenient to write
simply e.

It is often necessary to work out powers of this constant, such as e2, e3 and so on. Your scientific
calculator will be programmed to do this already. You should check that you can use your
calculator to do this. Look for a button marked ex, and check that

e2 = 7.389, and e3 = 20.086

In both cases we have quoted the answer to three decimal places although your calculator will
give a more accurate answer than this.

You should also check that you can evaluate negative and fractional powers of e such as

e1/2 = 1.649 and e−2 = 0.135

2. The exponential function

If we write y = ex we can calculate the value of y as we vary x. Values obtained in this way can
be placed in a table. For example:

x −3 −2 −1 0 1 2 3
y = ex 0.050 0.135 0.368 1 2.718 7.389 20.086

This is a table of values of the exponential function ex. If pairs of x and y values are plotted
we obtain a graph of the exponential function as shown overleaf. If you have never seen this
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function before it will be a worthwhile exercise to plot it for yourself.

–3 –2 –1 1 2 3

5

10

15

20

x

y

A graph of the exponential function y = ex

It is important to note that as x becomes larger, the value of ex grows without bound. We write
this mathematically as ex → ∞ as x→ ∞. This behaviour is known as exponential growth.

3. The negative exponential function
A related function is the negative exponential function y = e−x. A table of values of this
function is shown below together with its graph.

x −3 −2 −1 0 1 2 3
y = e−x 20.086 7.389 2.718 1 0.368 0.135 0.050

–3 –2 –1 1 2 3

5

10

15

20

x

y

A graph of the negative exponential function y = e−x

It is very important to note that as x becomes larger, the value of e−x approaches zero. We
write this mathematically as e−x → 0 as x → ∞. This behaviour is known as exponential
decay.

Exercises
A useful exercise would be to draw up tables of values and plot graphs of some related functions:

a) y = e2x, b) y = e0.5x, c) y = −ex, d) y = −e−x, e) y = 1 − e−x.
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✌3.5

The hyperbolic functions
Introduction
In a number of applications, the exponential functions ex and e−x occur in particular combina-
tions and these combinations are referred to as the hyperbolic functions. This leaflet defines
these functions and shows their graphs.

1. The hyperbolic functions

The hyperbolic cosine is defined as

coshx =
ex + e−x

2

The hyperbolic sine is defined as

sinhx =
ex − e−x

2

These are often referred to as the ‘cosh’ function and the ‘shine’ function. They are nothing
more than combinations of the exponential functions ex and e−x.

Your scientific calculator can be used to evaluate these functions. Usually the ‘hyp cos’ and
‘hyp sin’ buttons are used. You may need to refer to your calculator manual. Check that you
can use your calculator by verifying that

sinh 3 = 10.018 and cosh 4.2 = 33.351

You may like to verify that the same values can be obtained by using the exponential functions,
that is

sinh 3 =
e3 − e−3

2
and cosh 4.2 =

e4.2 + e−4.2

2

The hyperbolic tangent is defined as

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

Other hyperbolic functions are

sech x =
1

coshx
, cosech x =

1

sinhx
, cothx =

coshx

sinhx
=

1

tanhx
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By drawing up tables of values, or indeed by using the properties of the exponential functions,
graphs can be plotted. The graphs of coshx, sinh x and tanhx are shown below.

2. Graphs of the hyperbolic functions

1 2 30–1–2–3

5

10

1

x

cosh x

Some properties of coshx

• cosh 0 = 1 and coshx is greater than 1 for all other values of x
• the graph is symmetrical about the y axis. Mathematically this means cosh(−x) = coshx.

Cosh x is said to be an even function.
• coshx→ +∞ as x→ ±∞

1 2 30–1–2–3

5

–5

x

sinh x

Some properties of sinhx

• sinh 0 = 0, the graph passes through the origin
• sinh(−x) = − sinhx. Sinh x is said to be an odd function – it has rotational symmetry

about the origin.
• sinhx→ +∞ as x→ +∞, sinhx→ −∞ as x→ −∞

1 2 30–1–2–3
x

1

–1

tanh x

Some properties of tanhx

• tanh 0 = 0 and −1 < tanhx < 1 for all x
• tanh(−x) = − tanhx. Tanh x is said to be an odd function – it has rotational symmetry

about the origin.
• tanhx→ +1 as x→ +∞, tanhx→ −1 as x→ −∞
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✌3.6

The hyperbolic identities
Introduction
The hyperbolic functions satisfy a number of identities. These allow expressions involving the
hyperbolic functions to be written in different, yet equivalent forms. Several commonly used
identities are given in this leaflet.

1. Hyperbolic identities

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

sech x =
1

coshx
=

2

ex + e−x

cosechx =
1

sinhx
=

2

ex − e−x

cothx =
coshx

sinhx
=

1

tanhx
=

ex + e−x

ex − e−x

cosh2 x− sinh2 x = 1

1 − tanh2 x = sech2x

coth2x− 1 = cosech2x

sinh(x± y) = sinhx cosh y ± coshx sinh y

cosh(x± y) = coshx cosh y ± sinhx sinh y

tanh(x± y) =
tanhx± tanh y

1 ± tanhx tanh y

sinh 2x = 2 sinhx coshx

cosh 2x = cosh2 x+ sinh2 x

cosh2 x =
cosh 2x+ 1

2

sinh2 x =
cosh 2x− 1

2
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✌3.7

The logarithm function
Introduction
This leaflet provides a table of values and graph of the logarithm function y = loge x.

1. The logarithm function and its graph
Logarithms have been explained in leaflet 2.19 What is a logarithm?. There we showed how
logarithms provide alternative ways of writing expressions involving powers, and we showed how
a calculator can be used to find logarithms.

The natural logarithm function is y = loge x, also written lnx.
Note that we have chosen to use logarithms to base e as this is the most common base.

Using a calculator it is possible to construct a table of values of y = loge x as follows:

x 0.5 1 1.5 2 2.5 3 3.5
y = loge x −0.693 0 0.405 0.693 0.916 1.099 1.253

You should check these values for yourself to make sure that you can obtain them.

If pairs of x and y values are plotted we obtain a graph of the logarithm function as shown.

1 2 3

0.5

1

–0.5

x

y

The graph of the natural logarithm y = loge x

Note that the logarithm function is only defined for positive values of x. We cannot find the
logarithm of 0, or the logarithm of a negative number.

As an exercise you should draw up a similar table for the function y = log10 x and plot its graph.
The graph should have the same general shape as the one above although most of the points on
the graph are different.
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✌3.8

Solving equations involving
logarithms and exponentials

Introduction
It is often necessary to solve an equation in which the unknown occurs as a power, or exponent.
For example, you may need to find the value of x which satisfies 2x = 32. Very often the base
will be the exponential constant e, as in the equation ex = 20. To understand what follows
you must be familiar with the exponential constant. See leaflet 3.4 The exponential constant if
necessary.

You will also come across equations involving logarithms. For example you may need to find
the value of x which satisfies log10 x = 34. You will need to understand what is meant by a
logarithm, and the laws of logarithms (leaflets 2.19 What is a logarithm? and 2.20 The laws of
logarithms). In this leaflet we explain how such equations can be solved.

1. Revision of logarithms
Logarithms provide an alternative way of writing expressions involving powers. If

a = bc then logb a = c

For example: 100 = 102 can be written as log10 100 = 2.

Similarly, e3 = 20.086 can be written as loge 20.086 = 3.

The third law of logarithms states that, for logarithms of any base,

logAn = n logA

For example, we can write log10 52 as 2 log10 5, and loge 73 as 3 loge 7.

2. Solving equations involving powers

Example
Solve the equation ex = 14.

Solution
Writing ex = 14 in its alternative form using logarithms we obtain x = loge 14, which can be
evaluated directly using a calculator to give 2.639.
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Example
Solve the equation e3x = 14.

Solution
Writing e3x = 14 in its alternative form using logarithms we obtain 3x = loge 14 = 2.639. Hence

x =
2.639

3
= 0.880.

To solve an equation of the form 2x = 32 it is necessary to take the logarithm of both sides of
the equation. This is referred to as ‘taking logs’. Usually we use logarithms to base 10 or base
e because values of these logarithms can be obtained using a scientific calculator.

Starting with 2x = 32, then taking logs produces log10 2x = log10 32. Using the third law of
logarithms, we can rewrite the left-hand side to give x log10 2 = log10 32. Dividing both sides by
log10 2 gives

x =
log10 32

log10 2

The right-hand side can now be evaluated using a calculator in order to find x:

x =
log10 32

log10 2
=

1.5051

0.3010
= 5

Hence 25 = 32. Note that this answer can be checked by substitution into the original equation.

3. Solving equations involving logarithms

Example
Solve the equation log10 x = 0.98.

Solution
Rewriting the equation in its alternative form using powers gives 100.98 = x. A calculator can
be used to evaluate 100.98 to give x = 9.550.

Example
Solve the equation loge 5x = 1.7.

Solution
Rewriting the equation in its alternative form using powers gives e1.7 = 5x. A calculator can be
used to evaluate e1.7 to give 5x = 5.4739 so that x = 1.095 to 3dp.

Exercises
1. Solve each of the following equations to find x.

a) 3x = 15, b) ex = 15, c) 32x = 9, d) e5x−1 = 17, e) 103x = 4.

2. Solve the equations a) loge 2x = 1.36, b) log10 5x = 2, c) log10(5x+ 3) = 1.2.

Answers
1. a) 2.465, b) 2.708, c) 1, d) 0.767, e) 0.201.

2. a) 1.948 (3dp), b) 20, c) 2.570 (3dp).
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Polar coordinates

Introduction

An alternative to using (x, y), or cartesian coordinates, is to use ‘polar coordinates’. These
are particularly useful for problems involving circular symmetry. This leaflet explains polar
coordinates and shows how it is possible to convert between cartesian and polar coordinates.

1. Polar coordinates

When you were first introduced to coordinate systems you will have used cartesian coordinates.
These are the standard x and y coordinates of a point, P, such as that shown in Figure 3.9.1a
where the x axis is horizontal, the y axis is vertical and their intersection is the origin, O.

y

x

y

x

P(x ,y )

0

y

x

y

x

P(x,y )

0

r

θ

a) b)

Figure 3.9.1. a) Cartesian coordinates, b) Polar coordinates

The position of any point in the plane can be described uniquely by giving its x and y coordinates.

An alternative way of describing the position of a point is to draw a line from the origin to the
point as shown in Figure 3.9.1b. We can then state the length of this line, r, and the angle, θ,
between the positive direction of the x axis and the line. These quantities are called the polar
coordinates of P . It is conventional to denote the polar coordinates of a point either in the form
(r, θ) or r∠θ, although the latter is preferred to avoid confusion with cartesian coordinates. When
measuring the angle θ we use the convention that positive angles are measured anticlockwise,
and negative angles are measured clockwise. The length of OP is always taken to be positive.
Figure 3.9.2 shows several points and their polar coordinates.
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–2
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2� 90◦
2 � 146◦

3� − π/2

2� − 1.75

− π/2

90◦

− 1.75

146◦

Figure 3.9.2. Some points and their polar coordinates

2. Conversion between cartesian and polar coordinates

Look back at Figure 3.9.1b. From trigonometry note that cos θ =
x

r
so that x = r cos θ. Similarly

sin θ =
y

r
so that y = r sin θ. Hence if we know the polar coordinates of a point r∠θ, we can

find its cartesian coordinates.

Alternatively, using Pythagoras’ theorem note that r =
√
x2 + y2. Further, tan θ =

y

x
so that

θ = tan−1
(
y

x

)
. However, when calculating θ you should take special care to ensure that θ is

located in the correct quadrant. The result produced by your calculator can be misleading. A
diagram should always be sketched and will help you decide the correct quadrant.

x = r cos θ, y = r sin θ

r =
√
x2 + y2, tan θ =

y

x

Exercises
In each case sketch a diagram showing the point in question. Angles in degrees are denoted by
the degrees symbol ◦. Otherwise assume that the angle is measured in radians.

1. Calculate the cartesian coordinates of the following points.

a) 3∠2, b) 4∠0.7, c) 1∠180◦.

2. Calculate the polar coordinates of the following points.

a) (3, 4), b) (−2, 1), c) (−2,−3).

Answers
1. a) (−1.25, 2.73), b) (3.06, 2.58), c) (−1, 0). 2. a) 5∠0.927, b)

√
5∠2.678, c)

√
13∠ − 2.159
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Degrees and radians

Introduction

Angles can be measured in units of either degrees or radians. This leaflet explains these units
and shows how it is possible to convert between them.

1. Degrees and radians

Angles can be measured in units of either degrees or radians. The symbol for degree is ◦. Usually
no symbol is used to denote radians.

A complete revolution is defined as 360◦ or 2π radians. π stands for the number 3.14159 . . . and
you can work with this if you prefer. However, in many calculations you will find that you need
to work directly with multiples of π.

complete revolution = 360◦ = 2π radians

half a revolution = 180◦ = π radians

It is easy to use the fact that 360◦ = 2π radians to convert between the two measures. We have

360◦ = 2π radians

1◦ =
2π

360
=

π

180
radians

1 radian =
180

π
degrees ≈ 57.3◦

Example
a) Convert 65◦ to radians. b) Convert 1.75 radians to degrees.
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Solution
a)

1◦ =
π

180
radians

65◦ = 65 × π

180
= 1.134 radians

b)

1 radian =
180

π
degrees

1.75 radians = 1.75 × 180

π
= 100.268◦

Note the following commonly met angles:

30◦ = π
6

radians 45◦ = π
4

radians 60◦ = π
3

radians
90◦ = π

2
radians 135◦ = 3π

4
radians 180◦ = π radians

30◦ =
π

6
radians 45◦ =

π

4
radians 60◦ =

π

3
radians

90◦ =
π

2
radians

Your calculator should be able to work with angles measured in both radians and degrees.
Usually the MODE button allows you to select the appropriate measure. When calculations
involve calculus you should always work with radians and not degrees.

Exercises
1. Convert each of the following angles given in degrees, to radians. Give your answers correct
to 2 decimal places.

a) 32◦, b) 95◦, c) 217◦.

2. Convert each of the following angles given in radians, to degrees. Give your answers correct
to 2 decimal places.

a) 3 radians, b) 2.4 radians, c) 1 radian.

3. Convert each of the following angles given in radians, to degrees. Do not use a calculator.

a) π
15

, b) π
5
.

4. Convert the following angles given in degrees, to radians. Do not use a calculator and give
your answers as multiples of π.

a) 90◦, b) 72◦, c) −45◦.

Answers
1. a) 0.56 radians, b) 1.66 radians, c) 3.79 radians. 2. a) 171.89◦, b) 137.51◦, c) 57.30◦.
3. a) 12◦, b) 36◦. 4. a) π

2
radians, b) 2π

5
radians, c) −π

4
radians.
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The trigonometrical ratios
Introduction
The trigonometrical ratios sine, cosine and tangent appear frequently in many engineering prob-
lems. This leaflet revises the meaning of these terms.

1. Sine, cosine and tangent ratios
Study the right-angled triangle ABC shown below.

A B

C

θ

hypotenuse side opposite to θ

side adjacent tο θ

The side opposite the right-angle is called the hypotenuse. The side opposite to θ is BC.
The remaining side, AB, is said to be adjacent to θ.

Suppose we know the lengths of each of the sides as in the figure below.

6

810

A B

C

θ

We can then divide the length of one side by the length of one of the other sides.

The ratio BC
AC

is known as the sine of angle θ. This is abbreviated to sin θ. In the triangle shown
we see that

sin θ =
8

10
= 0.8

The ratio AB
AC

is known as the cosine of angle θ. This is abbreviated to cos θ. In the triangle
shown we see that

cos θ =
6

10
= 0.6

The ratio BC
AB

is known as the tangent of angle θ. This is abbreviated to tan θ. In the triangle
shown we see that

tan θ =
8

6
= 1.3333

In any right-angled triangle we define the trigonometrical ratios as follows:
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sin θ =
opposite

hypotenuse
=
BC

AC
cos θ =

adjacent

hypotenuse
=
AB

AC

tan θ =
opposite

adjacent
=
BC

AB

2. Some standard, or common, triangles

1

1
√2

45° 30°

60°

√3

2
1

sin 45◦ =
1√
2
, cos 45◦ =

1√
2
, tan 45◦ = 1

sin 30◦ =
1

2
, cos 30◦ =

√
3

2
, tan 30◦ =

1√
3

sin 60◦ =

√
3

2
, cos 60◦ =

1

2
, tan 60◦ =

√
3

3. Using a calculator
If we know the angles in a right-angled triangle the trigonometrical ratios can be found using a
scientific calculator. Look for the sine, cosine and tangent buttons on your calculator and make
sure that you can use them by verifying that

sin 50◦ = 0.7660, cos 32◦ = 0.8480

Your calculator will be able to handle angles measured in either radians or degrees. It will be
necessary for you to choose the appropriate units. Study your calculator manual to learn how
to do this. Check that

sin 0.56 radians = 0.5312, tan 1.4 radians = 5.7979

4. Finding an angle when a trigonometrical ratio is known
If we are given, or know, a value for sin θ, cos θ or tan θ we may want to work out the corre-
sponding angle θ. This process is known as finding the inverse sine, inverse cosine or inverse
tangent. Your calculator will be pre-programmed for doing this. The buttons will be labelled
invsin, or sin−1, and so on.

Check that you can use your calculator to show that if sin θ = 0.75 then θ = 48.59◦.

Mathematically we write this as follows:

if sin θ = 0.75, then θ = sin−1 0.75 = 48.59◦
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✌4.3

Graphs of the trigonometric
functions

Introduction

The trigonometric functions play a very important role in engineering mathematics. Familiarity
with the graphs of these functions is essential. Graphs of the trigonometric functions sine, cosine
and tangent, together with some tabulated values are shown here for reference.

1. The sine function

Using a scientific calculator a table of values of sin θ can be drawn up as θ varies from 0 to 360◦.

θ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

sin θ 0 0.5000 0.8660 1 0.8660 0.5000
θ 180◦ 210◦ 240◦ 270◦ 300◦ 360◦

sin θ 0 −0.5000 −0.8660 −1 −0.8660 0

Using the table, a graph of the function y = sin θ can be plotted and is shown below on the left.

sin θ

1

−1

90◦ 270◦
360◦

θ −180◦ θ

sin θ

1

−1

90◦ 270◦ 450◦

If further values, outside the range 0◦ to 360◦, are calculated we find that the wavy pattern
repeats itself as shown on the right. We say that the sine function is periodic with period 360◦.
Some values are particularly important and should be remembered:

sin 0◦ = 0, sin 90◦ = 1, sin 180◦ = 0, sin 270◦ = −1

The maximum value of sin θ is 1, and the minimum value is −1.

2. The cosine function
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θ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

cos θ 1 0.8660 0.5000 0 −0.5000 −0.8660
θ 180◦ 210◦ 240◦ 270◦ 300◦ 360◦

cos θ −1 −0.8660 −0.5000 0 0.5000 1

Using a scientific calculator a table of values of cos θ can be drawn up as θ varies from 0 to 360◦.

Using the table, a graph of the function y = cos θ can be plotted as shown on the left.

cosθ

1

-1

90◦

360◦ θ

cosθ

1

-1

θ

90◦

360◦

If further values are calculated outside the range 0 ≤ θ ≤ 360◦ we find that the wavy pattern
repeats itself as shown on the right. We say that the cosine function is periodic with period
360◦. Some values are particularly important and should be remembered:

cos 0◦ = 1, cos 90◦ = 0, cos 180◦ = −1, cos 270◦ = 0

The maximum value of cos θ is 1, and the minimum value is −1.

3. The tangent function
Using a scientific calculator a table of values of tan θ can be drawn up as θ varies from 0 to 180◦

although when θ = 90◦ you will find that this function is not defined.

θ 0 45◦ 90◦ 135◦ 180◦

tan θ 0 1 ∞ −1 0

Using the table, a graph of the function y = tan θ can be plotted and is shown below on the left.

tanθ

θ

tanθ

0◦ 180◦ 180◦ 360◦θ

If further values are calculated outside the range 0 ≤ θ ≤ 180◦ we find that the pattern repeats
itself as shown on the right. We say that the tangent function is periodic with period 180◦.

Some values are particularly important and should be remembered:

tan 0◦ = 0, tan 45◦ = 1

There is no maximum value of tan θ because it increases without bound. There is no minimum
value. However there are certain values where tan θ is not defined, including −90◦, 90◦, 270◦

and so on. Here the graph shoots off to infinity.
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Trigonometrical identities
Introduction
Very often it is necessary to rewrite expressions involving sines, cosines and tangents in alter-
native forms. To do this we use formulas known as trigonometric identities. A number of
commonly used identities are listed here.

1. The identities

tanA =
sinA

cosA
secA =

1

cosA
cosecA =

1

sinA
cotA =

cosA

sinA
=

1

tanA

sin(A±B) = sinA cosB ± cosA sinB

cos(A±B) = cosA cosB ∓ sinA sinB

tan(A±B) =
tanA± tanB

1 ∓ tanA tanB

2 sinA cosB = sin(A+B) + sin(A−B)

2 cosA cosB = cos(A−B) + cos(A+B)

2 sinA sinB = cos(A−B) − cos(A+B)

sin2A+ cos2A = 1

1 + cot2A = cosec2A, tan2A+ 1 = sec2A

cos 2A = cos2A− sin2A = 2 cos2A− 1 = 1 − 2 sin2A

sin 2A = 2 sinA cosA
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sin2A =
1 − cos 2A

2
, cos2A =

1 + cos 2A

2

sinA+ sinB = 2 sin
(
A+B

2

)
cos

(
A−B

2

)

sinA− sinB = 2 cos
(
A+B

2

)
sin

(
A−B

2

)

cosA+ cosB = 2 cos
(
A+B

2

)
cos

(
A−B

2

)

cosA− cosB = 2 sin
(
A+B

2

)
sin

(
B − A

2

)

Note: sin2A is the notation used for (sinA)2. Similarly cos2A means (cosA)2 and so on.
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✌4.5

Pythagoras’ theorem

Introduction

Pythagoras’ theorem relates the lengths of the sides of a right-angled triangle. This leaflet
reminds you of the theorem and provides some revision examples and exercises.

1. Pythagoras’ theorem

Study the right-angled triangle shown.

hypotenuse

A

BC
a

b
c

In any right-angled triangle, ABC, the side opposite the right-angle is called the hypotenuse.
Here we use the convention that the side opposite angle A is labelled a. The side opposite B is
labelled b and the side opposite C is labelled c.

Pythagoras’ theorem states that the square of the hypotenuse, (c2), is equal to the sum of
the squares of the other two sides, (a2 + b2).

Pythagoras’ theorem: c2 = a2 + b2

Example

A

BC

c
9

5

Suppose AC = 9 cm and BC = 5 cm as shown. Find the length of the hypotenuse, AB.
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Solution
Here, a = BC = 5, and b = AC = 9. Using the theorem

c2 = a2 + b2

= 52 + 92

= 25 + 81

= 106

c =
√

106 = 10.30 (2dp.)

The hypotenuse has length 10.30 cm.

Example
In triangle ABC shown, suppose that the length of the hypotenuse is 14 cm and that a = BC = 3
cm. Find the length of AC.

A

BC

b 14

3

Solution
Here a = BC = 3, and c = AB = 14. Using the theorem

c2 = a2 + b2

142 = 32 + b2

196 = 9 + b2

b2 = 196 − 9

= 187

b =
√

187 = 13.67 (2dp)

The length of AC is 13.67 cm.

Exercises
1. In triangle ABC in which C = 90◦, AB = 25 cm and AC = 17 cm. Find the length BC.

2. In triangle ABC, the angle at B is the right-angle. If AB = BC = 5 cm find AC.

3. In triangle CDE the right-angle is E. If CD = 55 cm and DE = 37 cm find EC.

Answers
1. 18.33 cm. (2dp)

2. AC =
√

50 = 7.07 cm. (2dp)

3. EC =
√

1656 = 40.69 cm. (2dp)
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The sine rule and cosine rule
Introduction

To solve a triangle is to find the lengths of each of its sides and all its angles. The sine rule
is used when we are given either a) two angles and one side, or b) two sides and a non-included
angle. The cosine rule is used when we are given either a) three sides or b) two sides and the
included angle.

1. The sine rule

Study the triangle ABC shown below. Let B stands for the angle at B. Let C stand for the
angle at C and so on. Also, let b = AC, a = BC and c = AB.

b = AC

c = AB
a = BC

A

B

C

The sine rule:
a

sinA
=

b

sinB
=

c

sinC

Example
In triangle ABC, B = 21◦, C = 46◦ and AB = 9 cm. Solve this triangle.

Solution
We are given two angles and one side and so the sine rule can be used. Furthermore, since
the angles in any triangle must add up to 180◦ then angle A must be 113◦. We know that
c = AB = 9. Using the sine rule

a

sin 113◦
=

b

sin 21◦
=

9

sin 46◦

So,
b

sin 21◦
=

9

sin 46◦

from which

b = sin 21◦ × 9

sin 46◦
= 4.484 cm (3dp)

4.6.1 copyright c© Pearson Education Limited, 2000



Similarly

a = sin 113◦ × 9

sin 46◦
= 11.517 cm (3dp)

2. The cosine rule
Refer to the triangle shown below.

b = AC

c = AB
a = BC

A

B

C

The cosine rule:

a2 = b2 + c2 − 2bc cosA, b2 = a2 + c2 − 2ac cosB, c2 = a2 + b2 − 2ab cosC

Example
In triangle ABC, AB = 42 cm, BC = 37 cm and AC = 26 cm. Solve this triangle.

Solution
We are given three sides of the triangle and so the cosine rule can be used. Writing a = 37,
b = 26 and c = 42 we have

a2 = b2 + c2 − 2bc cosA

from which
372 = 262 + 422 − 2(26)(42) cosA

cosA =
262 + 422 − 372

(2)(26)(42)
=

1071

2184
= 0.4904

and so
A = cos−1 0.4904 = 60.63◦

You should apply the same technique to verify that B = 37.76◦ and C = 81.61◦. You should
also check that the angles you obtain add up to 180◦.

Exercises
1. Solve the triangle ABC in which AC = 105 cm, AB = 76 cm and A = 29◦.

2. Solve the triangle ABC given C = 40◦, b = 23 cm and c = 19 cm.

Answers
1. a = 53.31cm, B = 72.72◦, C = 78.28◦. 2. A = 11.09◦, B = 128.91◦, a = 5.69 cm.

or A = 88.91◦, B = 51.09◦, BC = 29.55 cm.
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Determinants
Introduction
Determinants are mathematical objects which have applications in engineering mathematics.
For example, they can be used in the solution of simultaneous equations, and to evaluate vector
products. This leaflet will show you how to calculate the value of a determinant.

1. Evaluating a determinant

The symbol

∣∣∣∣∣ a b
c d

∣∣∣∣∣ represents the expression ad− bc and is called a determinant.

For example ∣∣∣∣∣ 3 2
1 4

∣∣∣∣∣ means 3 × 4 − 2 × 1 = 12 − 2 = 10

Because

∣∣∣∣∣ a b
c d

∣∣∣∣∣ has two rows and two columns we describe it as a ‘2 by 2’ or second-order

determinant. Its value is given by

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc

If we are given values for a, b, c and d we can use this to calculate the value of the determinant.
Note that, once we have worked it out, a determinant is a single number.

Exercises
Evaluate the following determinants:

a)

∣∣∣∣∣ 3 4
6 5

∣∣∣∣∣ b)

∣∣∣∣∣ 2 −2
1 4

∣∣∣∣∣, c)

∣∣∣∣∣ 8 5
−2 4

∣∣∣∣∣, d)

∣∣∣∣∣ 6 10
−3 −5

∣∣∣∣∣, e)

∣∣∣∣∣ x 5
y 2

∣∣∣∣∣.

Answers
a) 15− 24 = −9, b) 8− (−2) = 10, c) 32− (−10) = 42, d) −30− (−30) = 0, e) 2x− 5y.

2. Third-order determinants
A third-order or ‘3 by 3’ determinant can be written∣∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
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One way in which it can be evaluated is to use second-order determinants as follows:

a1

∣∣∣∣∣ b2 c2
b3 c3

∣∣∣∣∣ − b1
∣∣∣∣∣ a2 c2
a3 c3

∣∣∣∣∣ + c1

∣∣∣∣∣ a2 b2
a3 b3

∣∣∣∣∣
Note in particular the way that the signs alternate between + and −.

For example

∣∣∣∣∣∣∣
1 2 1
−1 3 4
5 1 2

∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 3 4
1 2

∣∣∣∣∣ − 2

∣∣∣∣∣ −1 4
5 2

∣∣∣∣∣ + 1

∣∣∣∣∣ −1 3
5 1

∣∣∣∣∣
= 1(2) − 2(−22) + 1(−16)

= 2 + 44 − 16

= 30

Exercises

1. Evaluate each of the following determinants.

a)

∣∣∣∣∣∣∣
2 4 1
1 0 4
5 −1 3

∣∣∣∣∣∣∣, b)

∣∣∣∣∣∣∣
0 −3 2
−9 4 1
6 0 2

∣∣∣∣∣∣∣, c)

∣∣∣∣∣∣∣
7 −2 3
−1 −4 −4
6 −2 12

∣∣∣∣∣∣∣, d)

∣∣∣∣∣∣∣
a 0 0
0 b 0
0 0 c

∣∣∣∣∣∣∣.
2. Evaluate each of the following determinants.

a)

∣∣∣∣∣∣∣
9 12 1
1 4 1
1 5 3

∣∣∣∣∣∣∣, b)

∣∣∣∣∣∣∣
3 12 1
−3 4 1
4 5 3

∣∣∣∣∣∣∣, c)

∣∣∣∣∣∣∣
3 9 1
−3 1 1
4 1 3

∣∣∣∣∣∣∣, d)

∣∣∣∣∣∣∣
3 9 12
−3 1 4
4 1 5

∣∣∣∣∣∣∣.
Answers

1. a) 75, b) −120, c) −290, d) abc. 2. a) 40, b) 146, c) 116, d) 198.

3. Fourth-order determinants
These are evaluated using third-order determinants. Once again note the alternating plus and
minus sign.

Example

∣∣∣∣∣∣∣∣∣

5 2 6 3
3 9 12 1
−3 1 4 1
4 1 5 3

∣∣∣∣∣∣∣∣∣
= 5

∣∣∣∣∣∣∣
9 12 1
1 4 1
1 5 3

∣∣∣∣∣∣∣ − 2

∣∣∣∣∣∣∣
3 12 1
−3 4 1
4 5 3

∣∣∣∣∣∣∣ + 6

∣∣∣∣∣∣∣
3 9 1
−3 1 1
4 1 3

∣∣∣∣∣∣∣ − 3

∣∣∣∣∣∣∣
3 9 12
−3 1 4
4 1 5

∣∣∣∣∣∣∣
= 5(40) − 2(146) + 6(116) − 3(198)

= 200 − 292 + 696 − 594

= 10

Determinants can be used in the solution of simultaneous equations using Cramer’s rule – see
the leaflet 5.2 Cramer’s rule.
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✌5.2

Cramer’s rule
Introduction
Cramer’s rule is a method for solving linear simultaneous equations. It makes use of determinants
and so a knowledge of these is necessary before proceeding.

1. Cramer’s rule – two equations
If we are given a pair of simultaneous equations

a1x+ b1y = d1

a2x+ b2y = d2

then x and y can be found from

x =

∣∣∣∣∣ d1 b1
d2 b2

∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣
y =

∣∣∣∣∣ a1 d1

a2 d2

∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣

Example
Solve the equations

3x+ 4y = −14

−2x− 3y = 11

Solution
Using Cramer’s rule we can write the solution as the ratio of two determinants.

x =

∣∣∣∣∣ −14 4
11 −3

∣∣∣∣∣∣∣∣∣∣ 3 4
−2 −3

∣∣∣∣∣
=

−2

−1
= 2, y =

∣∣∣∣∣ 3 −14
−2 11

∣∣∣∣∣∣∣∣∣∣ 3 4
−2 −3

∣∣∣∣∣
=

5

−1
= −5

The solution of the simultaneous equations is then x = 2, y = −5.
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2. Cramer’s rule – three equations
For the case of three equations in three unknowns: If

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

then x, y and z can be found from

x =

∣∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
y =

∣∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
z =

∣∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣∣∣

Exercises
Use Cramer’s rule to solve the following sets of simultaneous equations.

a)

7x+ 3y = 15

−2x+ 5y = −16

b)

x+ 2y + 3z = 17

3x+ 2y + z = 11

x− 5y + z = −5

Answers
a) x = 3, y = −2, b) x = 1, y = 2, z = 4.
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Multiplying matrices
Introduction
One of the most important operations carried out with matrices is matrix multiplication. At
first sight this is done in a rather strange way. The reason for this only becomes apparent when
matrices are used to solve equations.

1. Some simple examples

To multiply
(

3 7
)

by

(
2
9

)
perform the following calculation.

(
3 7

) (
2
9

)
= 3 × 2 + 7 × 9 = 6 + 63 = 69

Note that we have paired elements in the row of the first matrix with elements in the column
of the second matrix, multiplied the paired elements together and added the results.

Another, larger example:

(
4 2 5

) 
 3

6
8


 = 4 × 3 + 2 × 6 + 5 × 8 = 12 + 12 + 40 = 64

Exercises
1. Evaluate the following:

a)
(

4 5
) (

2
9

)
, b)

(
−3 7

) (
2
9

)
, c)

(
1 3 5

) 
 3

7
8


, d)

(
−4 2 5

) 
 3

6
−8


.

Answers
1. a) 53, b) 57, c) 64, d) −40.

2. More general matrix multiplication
When we multiplied matrices in the previous section the answers were always single numbers.
Usually however, the result of multiplying two matrices is another matrix. Two matrices can
only be multiplied together if the number of columns in the first matrix is the same as the
number of rows in the second. So, if the first matrix has size p × q, that is, it has p rows and
q columns, and the second has size r × s, that is, it has r rows and s columns, we can only
multiply them together if q = r. When this is so, the result of multiplying them together is a
p× s matrix.
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Two matrices can only ever be multiplied together if
the number of columns in the first is the same as the number of rows in the second.

Example

Find

(
3 7
4 5

) (
2
9

)
.

Solution
The first matrix has size 2 × 2. The second has size 2 × 1. Clearly the number of columns in
the first is the same as the number of rows in the second. So, multiplication is possible and the
result will be a 2 × 1 matrix. The calculation is performed using the same operations as in the
examples in the previous section. (

3 7
4 5

) (
2
9

)
=

(
∗
∗

)

To obtain the first entry in the solution, ignore the second row of the first matrix. You have
already seen the required calculations.(

3 7
) (

2
9

)
=

(
69

)

To obtain the second entry in the solution, ignore the first row of the first matrix.(
4 5

) (
2
9

)
=

(
53

)

Putting it all together (
3 7
4 5

) (
2
9

)
=

(
69
53

)

Example

Find

(
2 4
5 3

) (
3 6
−1 9

)
.

Solution
The first matrix has size 2×2. The second matrix has size 2×2. Clearly the number of columns
in the first is the same as the number of rows in the second. The multiplication can be performed
and the result will be a 2 × 2 matrix.(

2 4
5 3

) (
3 6
−1 9

)
=

(
2 × 3 + 4 × (−1) 2 × 6 + 4 × 9
5 × 3 + 3 × (−1) 5 × 6 + 3 × 9

)
=

(
2 48
12 57

)

Exercises
1. Evaluate the following.

a)

(
−3 2
3 11

) (
3
−1

)
, b)

(
4 2
5 11

) (
3 10
−1 9

)
, c)

(
2 1
1 9

) (
2 0 2
5 13 1

)
.

Answers

1. a)

(
−11
−2

)
, b)

(
10 58
4 149

)
, c)

(
9 13 5
47 117 11

)
.

5.3.2 copyright c© Pearson Education Limited, 2000



✎

✍

�

✌5.4

The inverse of a 2 × 2 matrix
Introduction
Once you know how to multiply matrices it is natural to ask whether they can be divided. The
answer is no. However, by defining another matrix called the inverse matrix it is possible to
work with an operation which plays a similar role to division. In this leaflet we explain what is
meant by an inverse matrix and how the inverse of a 2 × 2 matrix is calculated.

1. The inverse of a 2 × 2 matrix
The inverse of a 2 × 2 matrix, A, is another 2 × 2 matrix denoted by A−1 with the property
that

AA−1 = A−1A = I

where I is the 2 × 2 identity matrix

(
1 0
0 1

)
. That is, multiplying a matrix by its inverse

produces an identity matrix. Note that in this context A−1 does not mean 1
A
.

Not all 2 × 2 matrices have an inverse matrix. If the determinant of the matrix is zero, then
it will not have an inverse, and the matrix is said to be singular. Only non-singular matrices
have inverses.

2. A simple formula for the inverse

In the case of a 2 × 2 matrix

(
a b
c d

)
a simple formula exists to find its inverse:

if A =

(
a b
c d

)
then A−1 =

1

ad− bc

(
d −b
−c a

)

Example

Find the inverse of the matrix A =

(
3 1
4 2

)
.

Solution
Using the formula

A−1 =
1

(3)(2) − (1)(4)

(
2 −1
−4 3

)

=
1

2

(
2 −1
−4 3

)
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This could be written as (
1 −1

2

−2 3
2

)

You should check that this answer is correct by performing the matrix multiplication AA−1.

The result should be the identity matrix I =

(
1 0
0 1

)
.

Example

Find the inverse of the matrix A =

(
2 4
−3 1

)
.

Solution
Using the formula

A−1 =
1

(2)(1) − (4)(−3)

(
1 −4
3 2

)

=
1

14

(
1 −4
3 2

)

This can be written

A−1 =

(
1/14 −4/14
3/14 2/14

)
=

(
1/14 −2/7
3/14 1/7

)

although it is quite permissible to leave the factor 1
14

at the front of the matrix.

Exercises

1. Find the inverse of A =

(
1 5
3 2

)
.

2. Explain why the inverse of the matrix

(
6 4
3 2

)
cannot be calculated.

3. Show that

(
3 4
2 3

)
is the inverse of

(
3 −4
−2 3

)
.

Answers

1. A−1 = 1
−13

(
2 −5
−3 1

)
=

(
− 2

13
5
13

3
13

− 1
13

)
.

2. The determinant of the matrix is zero, that is, it is singular and so has no inverse.
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The inverse of a matrix
Introduction
In this leaflet we explain what is meant by an inverse matrix and how it is calculated.

1. The inverse of a matrix
The inverse of a square n× n matrix, A, is another n× n matrix denoted by A−1 such that

AA−1 = A−1A = I

where I is the n × n identity matrix. That is, multiplying a matrix by its inverse produces
an identity matrix. Not all square matrices have an inverse matrix. If the determinant of the
matrix is zero, then it will not have an inverse, and the matrix is said to be singular. Only
non-singular matrices have inverses.

2. A formula for finding the inverse
Given any non-singular matrix A, its inverse can be found from the formula

A−1 =
adjA

|A|
where adjA is the adjoint matrix and |A| is the determinant of A. The procedure for finding
the adjoint matrix is given below.

3. Finding the adjoint matrix
The adjoint of a matrix A is found in stages:

(1) Find the transpose of A, which is denoted by AT . The transpose is found by interchanging
the rows and columns of A. So, for example, the first column of A is the first row of the
transposed matrix; the second column of A is the second row of the transposed matrix, and so
on.

(2) The minor of any element is found by covering up the elements in its row and column and
finding the determinant of the remaining matrix. By replacing each element of AT by its minor,
we can write down a matrix of minors of AT .

(3) The cofactor of any element is found by taking its minor and imposing a place sign
according to the following rule 


+ − + . . .
− + − . . .
+ − + . . .

. . . . . . . . .
. . .



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This means, for example, that to find the cofactor of an element in the first row, second column,
the sign of the minor is changed. On the other hand to find the cofactor of an element in the
second row, second column, the sign of the minor is unaltered. This is equivalent to multiplying
the minor by ‘+1’ or ‘−1’ depending upon its position. In this way we can form a matrix of
cofactors of AT . This matrix is called the adjoint of A, denoted adjA.

The matrix of cofactors of the transpose of A is called the adjoint matrix, adjA

This procedure may seem rather cumbersome, so it is illustrated now by means of an example.

Example

Find the adjoint, and hence the inverse, of A =


 1 −2 0

3 1 5
−1 2 3


.

Solution
Follow the stages outlined above. First find the transpose of A by taking the first column of A
to be the first row of AT , and so on:

AT =


 1 3 −1

−2 1 2
0 5 3




Now find the minor of each element in AT . The minor of the element ‘1’ in the first row, first

column, is obtained by covering up the elements in its row and column to give

(
1 2
5 3

)
and

finding the determinant of this, which is −7. The minor of the element ‘3’ in the second column

of the first row is found by covering up elements in its row and column to give

(
−2 2
0 3

)
which

has determinant −6. We continue in this fashion and form a new matrix by replacing every
element of AT by its minor. Check for yourself that this process gives

matrix of minors of AT =


 −7 −6 −10

14 3 5
7 0 7




Then impose the place sign. This results in the matrix of cofactors, that is, the adjoint of A.

adjA =


 −7 6 −10

−14 3 −5
7 0 7




Notice that to complete this last stage, each element in the matrix of minors has been multiplied
by 1 or −1 according to its position.

It is a straightforward matter to show that the determinant of A is 21. Finally

A−1 =
adjA

|A| =
1

21


 −7 6 −10

−14 3 −5
7 0 7




Exercise

1. Show that the inverse of


 1 3 2

0 5 1
−1 3 0


 is 1

4


 −3 6 −7

−1 2 −1
5 −6 5


.
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✌5.6

Using the inverse matrix to
solve equations

Introduction
One of the most important applications of matrices is to the solution of linear simultaneous
equations. In this leaflet we explain how this can be done.

1. Writing simultaneous equations in matrix form
Consider the simultaneous equations

x+ 2y = 4

3x− 5y = 1

Provided you understand how matrices are multiplied together you will realise that these can
be written in matrix form as (

1 2
3 −5

) (
x
y

)
=

(
4
1

)

Writing

A =

(
1 2
3 −5

)
, X =

(
x
y

)
, and B =

(
4
1

)

we have
AX = B

This is the matrix form of the simultaneous equations. Here the unknown is the matrix X,
since A and B are already known. A is called the matrix of coefficients.

2. Solving the simultaneous equations
Given

AX = B

we can multiply both sides by the inverse of A, provided this exists, to give

A−1AX = A−1B

But A−1A = I, the identity matrix. Furthermore, IX = X, because multiplying any matrix by
an identity matrix of the appropriate size leaves the matrix unaltered. So

X = A−1B
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if AX = B, then X = A−1B

This result gives us a method for solving simultaneous equations. All we need do is write them
in matrix form, calculate the inverse of the matrix of coefficients, and finally perform a matrix
multiplication.

Example
Solve the simultaneous equations

x+ 2y = 4

3x− 5y = 1

Solution

We have already seen these equations in matrix form:(
1 2
3 −5

) (
x
y

)
=

(
4
1

)

We need to calculate the inverse of A =

(
1 2
3 −5

)
.

A−1 =
1

(1)(−5) − (2)(3)

(
−5 −2
−3 1

)

= − 1

11

(
−5 −2
−3 1

)

Then X is given by

X = A−1B = − 1

11

(
−5 −2
−3 1

) (
4
1

)

= − 1

11

(
−22
−11

)

=

(
2
1

)

Hence x = 2, y = 1 is the solution of the simultaneous equations.

Exercises
1. Solve the following sets of simultaneous equations using the inverse matrix method.

a)
5x+ y = 13

3x+ 2y = 5
, b)

3x+ 2y = −2
x+ 4y = 6

.

Answers

1. a) x = 3, y = −2, b) x = −2, y = 2 .
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Vectors
Introduction
This leaflet explains notations in common use for describing vectors, and shows how to calculate
the modulus of vectors given in cartesian form.

1. Vectors
Vectors are quantities which possess a magnitude and a direction. As such, we often represent
them by directed line segments such as those shown below.

−−→
AB

−−→
CD

a

c

A

B

C

D

The arrow on the line indicates the intended direction whilst the length of the line represents
the magnitude. The magnitude is also called the modulus or the length of the vector.

It is important when writing vectors that we distinguish them from scalars (or numbers) and
so various notations are used to do this. We can write the vector from A to B as

−→
AB. In

printed work vectors are often shown with a bold typeface, as in a. In handwritten work we
usually underline vectors, as in a. Whichever way you choose it is important that vectors can
be distinguished from scalars. The magnitude of a vector a =

−→
AB is written as |a| or |−→AB|. The

magnitude is represented by the length of the directed line segment.

2. Unit vectors
A unit vector is a vector of length 1. To obtain a unit vector in the direction of any vector a
we divide by its modulus. To show a vector is a unit vector we give it a ‘hat’, as in â.

â =
a

|a|
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3. Cartesian components

i represents a unit vector in the direction of the positive x axis

j represents a unit vector in the direction of the positive y axis

x axis

y axis

r = ai + bj

ai

bj

i

j

Any vector in the xy plane can be written r = ai+ bj where a and b are numbers.

Its modulus can be found using Pythagoras’ theorem:

|r| =
√
a2 + b2

4. Three dimensions
To work in three dimensions we introduce an additional unit vector k which points in the
direction of the positive z axis.

Any vector in three dimensions can be written r = ai+ bj + ck.

Its modulus can be found using Pythagoras’ theorem:

|r| =
√
a2 + b2 + c2

r = ai + bj + ck

i

j

k

O

a

b

c

x

y

z
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The scalar product
Introduction
In this leaflet we describe how to find the scalar product of two vectors.

1. Definition of the scalar product
Consider the two vectors a and b shown below. Note that the tails of the two vectors coincide
and that the angle between the vectors has been labelled θ.

a

b

θ

Their scalar product, denoted a · b, is defined as |a| |b| cos θ. It is very important to use the
dot in the formula. The dot is the symbol for the scalar product, and is the reason why the
scalar product is also known as the dot product. You should never use a × sign in this
context because this symbol is reserved for a quantity called the vector product which is quite
different.

scalar product : a · b = |a| |b| cos θ

Example
Vectors a and b are shown in the figure above. Suppose the vector a has modulus 8 and the
vector b has modulus 7. Suppose also that the angle, θ, between these vectors is 30◦. Calculate
a · b.

Solution

a · b = |a| |b| cos θ

= (8)(7) cos 30◦

= 48.5

The scalar product of a and b is equal to 48.5. Note that when finding a scalar product the
result is always a scalar, that is a number, and not a vector.
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2. A formula for finding the scalar product
A simple formula exists for finding a scalar product when the vectors are given in cartesian form.

if a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a · b = a1b1 + a2b2 + a3b3

Example
If a = 5i + 3j − 2k and b = 8i − 9j + 11k, find a · b.

Solution
Respective components are multiplied together and the results are added.

a · b = (5)(8) + (3)(−9) + (−2)(11) = 40 − 27 − 22 = −9

Note again that the result is a scalar not a vector. The answer cannot contain i, j, or k.

Exercises
1. If a = 2i + j + 3k, b = 7i + j + 2k and c = −i + 4j + 2k show a · b = 21, b · c = 1 and
a · c = 8.

3. Using the scalar product to find the angle between two vectors
The scalar product is useful when you need to calculate the angle between two vectors.

Example
Find the angle between the vectors a = 2i + 3j + 5k and b = i − 2j + 3k.

Solution
Their scalar product is easily shown to be 11. The modulus of a is

√
22 + 32 + 52 =

√
38. The

modulus of b is
√

12 + (−2)2 + 32 =
√

14. Using the formula for the scalar product we find

a · b = |a| |b| cos θ

11 =
√

38
√

14 cos θ

from which

cos θ =
11√

38
√

14
= 0.4769 so that θ = cos−1(0.4769) = 61.5◦

In general, the angle between two vectors can be found from the following formula:

cos θ =
a · b
|a| |b|

Exercise
1. Show that the angle between the vectors a = 5i + 3j − 2k and b = 8i − 9j + 11k is 95.14◦.
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The vector product
Introduction
In this leaflet we describe how to find the vector product of two vectors.

1. Definition of the vector product
The result of finding the vector product of two vectors, a and b, is a vector of modulus |a| |b| sin θ
in the direction of ê, where ê is a unit vector perpendicular to the plane containing a and b in
a sense defined by the right-handed screw rule as shown below. The symbol used for the vector
product is the times sign, ×. Do not use a dot, ·, because this is the symbol used for a scalar
product.

b

a

a × b

|a| |b| sin θlength 

θ

vector product: a × b = |a| |b| sin θ ê

2. A formula for finding the vector product
A formula exists for finding the vector product of two vectors given in cartesian form:

If a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

Example
Evaluate the vector product a × b if a = 3i − 2j + 5k and b = 7i + 4j − 8k.

Solution
By inspection a1 = 3, a2 = −2, a3 = 5, b1 = 7, b2 = 4, b3 = −8, and so

a × b = ((−2)(−8) − (5)(4))i − ((3)(−8) − (5)(7))j + ((3)(4) − (−2)(7))k

= −4i + 59j + 26k
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3. Using determinants to evaluate a vector product
Evaluation of a vector product using the previous formula is very cumbersome. There is a more
convenient and easily remembered method for those of you who are familiar with determinants.
The vector product of two vectors a = a1i + a2j + a3k and b = b1i + b2j + b3k can be found by
evaluating the determinant:

a × b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
To find the i component of the vector product, imagine crossing out the row and column con-
taining i and finding the determinant of what is left, that is∣∣∣∣∣ a2 a3

b2 b3

∣∣∣∣∣ = a2b3 − a3b2

The resulting number is the i component of the vector product. The j component is found by
crossing out the row and column containing j and evaluating∣∣∣∣∣ a1 a3

b1 b3

∣∣∣∣∣ = a1b3 − a3b1

and then changing the sign of the result. Finally the k component is found by crossing out the
row and column containing k and evaluating∣∣∣∣∣ a1 a2

b1 b2

∣∣∣∣∣ = a1b2 − a2b1

If a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a × b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

Example
Find the vector product of a = 3i − 4j + 2k and b = 9i − 6j + 2k.

Solution
The two given vectors are represented in the determinant∣∣∣∣∣∣∣

i j k
3 −4 2
9 −6 2

∣∣∣∣∣∣∣
Evaluating this determinant we obtain

a × b = (−8 − (−12))i − (6 − 18)j + (−18 − (−36))k = 4i + 12j + 18k

Exercises
1. If a = 8i + j − 2k and b = 5i − 3j + k show that a × b = −5i − 18j − 29k. Show also that
b × a is not equal to a × b, but rather that b × a = 5i + 18j + 29k.
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What is a complex number?
Introduction

This leaflet explains how the set of real numbers with which you are already familiar is enlarged
to include further numbers called imaginary numbers. This leads to a study of complex
numbers which are useful in a variety of engineering applications, especially alternating current
circuit analysis.

1. Finding the square root of a negative number

It is impossible to find the square root of a negative number such as −16. If you try to find this
on your calculator you will probably obtain an error message. Nevertheless it becomes useful to
construct a way in which we can write down square roots of negative numbers.

We start by introducing a symbol to stand for the square root of −1. Conventionally this symbol
is j. That is j =

√
−1. It follows that j2 = −1. Using real numbers we cannot find the square

root of a negative number, and so the quantity j is not real. We say it is imaginary.

j is an imaginary number such that j2 = −1

Even though j is not real, using it we can formally write down the square roots of any negative
number as shown in the following example.

Example
Write down expressions for the square roots of a) 9, b) −9.

Solution
a)

√
9 = ±3.

b) Noting that −9 = 9 ×−1 we can write

√
−9 =

√
9 ×−1

=
√

9 ×
√
−1

= ±3 ×
√
−1

Then using the fact that
√
−1 = j we have

√
−9 = ±3j
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Example
Use the fact that j2 = −1 to simplify a) j3, b) j4.

Solution
a) j3= j2 × j. But j2 = −1 and so j3 = −1 × j = −j.
b) j4 = j2 × j2 = (−1) × (−1) = 1.

Using the imaginary number j it is possible to solve all quadratic equations.

Example
Use the formula for solving a quadratic equation to solve 2x2 + x+ 1 = 0.

Solution
We use the formula x = −b±

√
b2−4ac

2a
. With a = 2, b = 1 and c = 1 we find

x =
−1 ±

√
12 − (4)(2)(1)

2(2)

=
−1 ±

√
−7

4

=
−1 ±

√
7j

4

= −1

4
±

√
7

4
j

Exercises

1. Simplify a) −j2, b) (−j)2, c) (−j)3, d) −j3.
2. Solve the quadratic equation 3x2 + 5x+ 3 = 0.

Answers
1. a) 1, b) −1, c) j, d) j. 2. −5

6
±

√
11
6
j.

2. Complex numbers

In the previous example we found that the solutions of 2x2 +x+1 = 0 were −1
4
±

√
7

4
j. These are

complex numbers. A complex number such as −1
4
+

√
7

4
j is made up of two parts, a real part,

−1
4
, and an imaginary part,

√
7

4
. We often use the letter z to stand for a complex number and

write z = a+ bj, where a is the real part and b is the imaginary part.

z = a+ bj

where a is the real part and b is the imaginary part of the complex number.

Exercises
1. State the real and imaginary parts of: a) 13 − 5j, b) 1 − 0.35j, c) cos θ + j sin θ.

Answers
1. a) real part 13, imaginary part −5, b) 1,−0.35, c) cos θ, sin θ.
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✠7.2

Complex arithmetic
Introduction.
This leaflet describes how complex numbers are added, subtracted, multiplied and divided.

1. Addition and subtraction of complex numbers
Given two complex numbers we can find their sum and difference in an obvious way.

If z1 = a1 + b1j and z2 = a2 + b2j then

z1 + z2 = (a1 + a2) + (b1 + b2)j

z1 − z2 = (a1 − a2) + (b1 − b2)j

So, to add the complex numbers we simply add the real parts together and add the imaginary
parts together.

Example
If z1 = 13 + 5j and z2 = 8 − 2j find a) z1 + z2, b) z2 − z1.

Solution
a) z1 + z2 = (13 + 5j) + (8 − 2j) = 21 + 3j.

b) z2 − z1 = (8 − 2j) − (13 + 5j) = −5 − 7j

2. Multiplication of complex numbers
To multiply two complex numbers we use the normal rules of algebra and also the fact that
j2 = −1. If z1 and z2 are the two complex numbers their product is written z1z2.

Example
If z1 = 5 − 2j and z2 = 2 + 4j find z1z2.

Solution

z1z2 = (5 − 2j)(2 + 4j) = 10 + 20j − 4j − 8j2

Replacing j2 by −1 we obtain

z1z2 = 10 + 16j − 8(−1) = 18 + 16j

In general we have the following result:
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If z1 = a1 + b1j and z2 = a2 + b2j then

z1z2 = (a1 + b1j)(a2 + b2j) = a1a2 + a1b2j + b1a2j + b1b2j
2

= (a1a2 − b1b2) + j(a1b2 + a2b1)

3. Division of complex numbers
To divide complex numbers we need to make use of the complex conjugate. Given a complex
number, z, its conjugate, written z̄, is found by changing the sign of the imaginary part. For
example, the complex conjugate of z = 3 + 2j is z̄ = 3 − 2j. Division is illustrated in the
following example.

Example

Find
z1
z2

when z1 = 3 + 2j and z2 = 4 − 3j.

Solution
We require

z1
z2

=
3 + 2j

4 − 3j

Both numerator and denominator are multiplied by the complex conjugate of the denominator.
Overall, this is equivalent to multiplying by 1 and so the fraction remains unaltered, but it will
have the effect of making the denominator purely real, as you will see.

3 + 2j

4 − 3j
=

3 + 2j

4 − 3j
× 4 + 3j

4 + 3j

=
(3 + 2j)(4 + 3j)

(4 − 3j)(4 + 3j)

=
12 + 9j + 8j + 6j2

16 + 12j − 12j − 9j2

=
6 + 17j

25
(the denominator is now seen to be real)

=
6

25
+

17

25
j

Exercises
1. If z1 = 1 + j and z2 = 3 + 2j find a) z1z2, b) z1, c) z2, d) z1z1, e) z2z2.

2. If z1 = 1 + j and z2 = 3 + 2j find a) z1
z2

, b) z2
z1

, c) z1/z1, d) z2/z2.

3. Find a) 7−6j
2j

, b) 3+9j
1−2j

, c) 1
j
.

Answers
1. a) 1 + 5j, b) 1 − j, c) 3 − 2j, d) 2, e) 13.

2. a) 5
13

+ j
13

, b) 5
2
− j

2
, c) j, d) 5

13
+ 12

13
j.

3. a) −3 − 7
2
j, b) −3 + 3j, c) −j.
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✌7.3

The Argand diagram
Introduction
Engineers often find a pictorial representation of complex numbers useful.

Such a representation is known as an Argand diagram. This leaflet explains how to draw an
Argand diagram.

1. The Argand diagram
The complex number z = a+ bj is plotted as a point with coordinates (a, b) as shown. Because
the real part of z is plotted on the horizontal axis we often refer to this as the real axis. The
imaginary part of z is plotted on the vertical axis and so we refer to this as the imaginary
axis. Such a diagram is called an Argand diagram.

O

imaginary axis

real axis

(a, b)
z = a + bj

a

b

The complex number z = a+ bj is plotted as the point with coordinates (a, b).

Example
Plot the complex numbers 2 + 3j, −3 + 2j, −3 − 2j, 2 − 5j, 6, j on an Argand diagram.

Solution
The figure below shows the Argand diagram. Note that purely real numbers lie on the real axis.
Purely imaginary numbers lie on the imaginary axis. Note that complex conjugate pairs such
as −3 ± 2j lie symmetrically on opposite sides of the real axis.

imaginary axis

real axis

2 + 3j−3 + 2j

−3 − 2j

2 − 5j

6j

0

−5
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✠7.4

The polar form
Introduction

From an Argand diagram the modulus and the argument of a complex number can be defined.
These provide an alternative way of describing complex numbers known as the polar form. This
leaflet explains how to find the modulus and argument.

1. The modulus and argument of a complex number

The Argand diagram below shows the complex number z = a + bj. The distance of the point
(a, b) from the origin is called the modulus, or magnitude, of the complex number and has
the symbol r. Alternatively, r is written as |z|. The modulus is never negative. The modulus
can be found using Pythagoras’ theorem, that is

|z| = r =
√
a2 + b2

The angle between the positive x axis and a line joining (a, b) to the origin is called the argument
of the complex number. It is abbreviated to arg(z) and has been given the symbol θ.

a

b

z = a + bj
(a, b)

0

r

θ

We usually measure θ so that it lies between −π and π (that is, between −180◦ and 180◦).
Angles measured anticlockwise from the positive x axis are conventionally positive, whereas
angles measured clockwise are negative. Knowing values for a and b, trigonometry can be used
to determine θ. Specifically,

tan θ =
b

a
so that θ = tan−1

(
b

a

)

but care must be taken when using a calculator to find an inverse tangent that the solution
obtained is in the correct quadrant. Drawing an Argand diagram will always help to identify
the correct quadrant. The position of a complex number is uniquely determined by giving its
modulus and argument. This description is known as the polar form. When the modulus and
argument of a complex number, z, are known we write the complex number as z = r∠θ.
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Polar form of a complex number with modulus r and argument θ:

z = r∠θ

Example
Plot the following complex numbers on an Argand diagram and find their moduli.

a) z1 = 3 + 4j, b) z2 = −2 + j, c) z3 = 3j.

Solution
The complex numbers are shown in the figure below. In each case we can use Pythagoras’
theorem to find the modulus.

a) |z1| =
√

32 + 42 =
√

25 = 5, b) |z2| =
√

(−2)2 + 12 =
√

5 or 2.236, c) |z3| =
√

32 + 02 = 3.

•

•

•

3 + 4j

3j

−3 O

−2 + j

3

4

Example
Find the arguments of the complex numbers in the previous example.

Solution
a) z1 = 3 + 4j is in the first quadrant. Its argument is given by θ = tan−1 4

3
. Using a calculator

we find θ = 0.927 radians, or 53.13◦.

b) z2 = −2 + j is in the second quadrant. To find its argument we seek an angle, θ, in the
second quadrant such that tan θ = 1

−2
. To calculate this correctly it may help to refer to the

figure below in which α is an acute angle with tanα = 1
2
. From a calculator α = 0.464 and so

θ = π − 0.464 = 2.678 radians. In degrees, α = 26.57◦ so that θ = 180◦ − 26.57◦ = 153.43◦.

•

−3 O

−2 + j 1

θ
α

3−2

c) z3 = 3j is purely imaginary. Its argument is π
2
, or 90◦.

Exercises
1. Plot the following complex numbers on an Argand diagram and find their moduli and
arguments.

a) z = 9, b) z = −5, c) z = 1 + 2j, d) z = −1 − j, e) z = 8j, f) −5j.

Answers
1. a) |z| = 9, arg(z) = 0, b) |z| = 5, arg(z) = π, or 180◦, c) |z| =

√
5, arg(z) = 1.107

or 63.43◦, d) |z| =
√

2, arg(z) = −3π
4

or −135◦, e) |z| = 8, arg(z) = π
2

or 90◦, f) |z| = 5,
arg(z) = −π

2
or −90◦.
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✠7.5

The form r(cos θ + j sin θ)

Introduction

Any complex number can be written in the form z = r(cos θ + j sin θ) where r is its modulus
and θ is its argument. This leaflet explains this form.

1. The form r(cos θ + j sin θ)

Consider the figure below which shows the complex number z = a+ bj = r∠θ.

a

b

z = a + bj
(a, b)

0

r

θ

Using trigonometry we can write

cos θ =
a

r
and sin θ =

b

r

so that, by rearranging,

a = r cos θ and b = r sin θ

We can use these results to find the real and imaginary parts of a complex number given in
polar form:

if z = r∠θ, the real and imaginary parts of z are:

a = r cos θ and b = r sin θ, respectively

Using these results we can then write z = a+ bj as

z = a+ bj = r cos θ + jr sin θ

= r(cos θ + j sin θ)

This is an alternative way of expressing the complex number with modulus r and argument θ.
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z = a+ bj = r∠θ = r(cos θ + j sin θ)

Example
State the modulus and argument of a) z = 9(cos 40◦ + j sin 40◦), b) z = 17(cos 3.2 + j sin 3.2).

Solution
a) Comparing the given complex number with the standard form r(cos θ + j sin θ) we see that
r = 9 and θ = 40◦. The modulus is 9 and the argument is 40◦.

b) Comparing the given complex number with the standard form r(cos θ + j sin θ) we see that
r = 17 and θ = 3.2 radians. The modulus is 17 and the argument is 3.2 radians.

Example
a) Find the modulus and argument of the complex number z = 5j.

b) Express 5j in the form r(cos θ + j sin θ).

Solution
a) On an Argand diagram the complex number 5j lies on the positive vertical axis a distance 5
from the origin. Thus 5j is a complex number with modulus 5 and argument π

2
.

b)

z = 5j = 5(cos
π

2
+ j sin

π

2
)

Using degrees we would write

z = 5j = 5(cos 90◦ + j sin 90◦)

Example
a) State the modulus and argument of the complex number z = 4∠(π/3).

b) Express z = 4∠(π/3) in the form r(cos θ + j sin θ).

Solution
a) Its modulus is 4 and its argument is π

3
.

b) z = 4(cos π
3

+ j sin π
3
).

Noting cos π
3

= 1
2

and sin π
3

=
√

3
2

the complex number can be written 2 + 2
√

3j.

Exercises
1. By first finding the modulus and argument express z = 3j in the form r(cos θ + j sin θ).

2. By first finding the modulus and argument express z = −3 in the form r(cos θ + j sin θ).

3. By first finding the modulus and argument express z = −1 − j in the form r(cos θ + j sin θ).

Answers
1. 3(cos π

2
+ j sin π

2
). 2. 3(cosπ + j sin π).

3.
√

2(cos(−135◦) + j sin(−135◦)) =
√

2(cos 135◦ − j sin 135◦).
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Multiplication and division in
polar form

Introduction
When two complex numbers are given in polar form it is particularly simple to multiply and
divide them. This is an advantage of using the polar form.

1. Multiplication and division of complex numbers in polar form

If z1 = r1∠θ1 and z2 = r2∠θ2 then

z1z2 = r1r2∠(θ1 + θ2),
z1
z2

=
r1
r2

∠(θ1 − θ2)

Note that to multiply the two numbers we multiply their moduli and add their arguments.

To divide, we divide their moduli and subtract their arguments.

Example

If z1 = 5∠ (π/6), and z2 = 4∠ (−π/4) find a) z1z2, b)
z1
z2

, c)
z2
z1

.

Solution
a) To multiply the two complex numbers we multiply their moduli and add their arguments.
Therefore

z1z2 = 20∠
(
π

6
+

(
−π

4

))
= 20∠

(
− π

12

)

b) To divide the two complex numbers we divide their moduli and subtract their arguments.

z1
z2

=
5

4
∠

(
π

6
−

(
−π

4

))
=

5

4
∠5π

12

c)
z2
z1

=
4

5
∠

(
−π

4
− π

6

)
=

4

5
∠

(
−5π

12

)

Exercises

1. If z1 = 7∠π
3

and z2 = 6∠π
2

find a) z1z2, b) z1
z2

, c) z2
z1

, d) z2
1 , e) z3

2 .

Answers
1. a) 42∠5π

6
, b) 7

6
∠ − π

6
, c) 6

7
∠π

6
, d) 49∠2π

3
, e) 216∠3π

2
.
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✠7.7

The exponential form
Introduction
In addition to the cartesian and polar forms of a complex number there is a third form in which
a complex number may be written – the exponential form. In this leaflet we explain this
form.

1. Euler’s relations
Two important results in complex number theory are known as Euler’s relations. These link
the exponential function and the trigonometric functions. They state:

Euler’s relations:
ejθ = cos θ + j sin θ, e−jθ = cos θ − j sin θ

The derivation of these relations is beyond the scope of this leaflet. By firstly adding, and then
subtracting, Euler’s relations we can obtain expressions for the trigonometric functions in terms
of exponential functions. Try this!

cos θ =
ejθ + e−jθ

2
, sin θ =

ejθ − e−jθ

2j

2. The exponential form of a complex number
Using the polar form, a complex number with modulus r and argument θ may be written

z = r(cos θ + j sin θ)

It follows immediately from Euler’s relations that we can also write this complex number in
exponential form as z = rejθ.

Exponential form
z = r ejθ

When using this form you should ensure that all angles are measured in radians and not degrees.

Example
State the modulus and argument of the following complex numbers:

a) z = 5ejπ/6, b) z = 0.01e0.02j, c) 3e−jπ/2, d) 5e2.
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Solution
In each case compare the given number with the standard form z = rejθ to identify the modulus
r and the argument θ.

a) The modulus and argument of 5ejπ/6 are 5 and π
6

respectively.

b) The modulus and argument of 0.01e0.02j are 0.01 and 0.02 respectively.

c) The modulus and argument of 3e−jπ/2 are 3 and −π
2

respectively.

d) The number 5e2 is purely real, and can be evaluated using a calculator. Its modulus is 36.95
and its argument is zero.

Example
Find the real and imaginary parts of z = 5e2j.

Solution
Recall that ejθ = cos θ + j sin θ. Then

5e2j = 5(cos 2 + j sin 2)

= 5 cos 2 + (5 sin 2)j

The real part is 5 cos 2 which equals −2.08. The imaginary part is 5 sin 2, that is 4.55 (to 2dp).

Example
Express the number z = 3 + 3j in exponential form.

Solution
To express a number in exponential form we must first find its modulus and argument. The
modulus of 3 + 3j is

√
32 + 32 =

√
18. The complex number lies in the first quadrant of the

Argand diagram and so its argument θ is given by θ = tan−1 3
3

= π
4
. Thus

z = 3 + 3j =
√

18ejπ/4

Exercises
1. State the modulus and argument of each of the following complex numbers:

a) 5e0.3j, b) 4e−j2π/3, c) e2πj, d) 0.35e−0.2j.

2. Express each of the following in the form rejθ.

a) 3∠(π/3), b)
√

2∠(π/4), c) 3∠(−π/4), d) 5∠0, e) 17∠(π/2).

3. Express each of the following in the form a+ bj.

a) 13ejπ/3, b) 13e−jπ/3, c) 4e2πj, d) 7e0.2j.

4. Show that e1+3j is equal to e1e3j. Hence deduce e1+3j = −2.69 + 0.38j.

Answers
1. a) 5, 0.3 radians, b) 4, −2π/3 radians, c) 1, 2π radians, d) 0.35, −0.2 radians.

2. a) 3ejπ/3, b)
√

2ejπ/4, c) 3e−jπ/4, d) 5e0 = 5, e) 17ejπ/2.

3. a) 6.5 + 11.3j, b) 6.5 − 11.3j, c) 4, d) 6.86 + 1.39j.
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Introduction to differentiation
Introduction
This leaflet provides a rough and ready introduction to differentiation. This is a technique
used to calculate the gradient, or slope, of a graph at different points.

1. The gradient function
Given a function, for example, y = x2, it is possible to derive a formula for the gradient of its
graph. We can think of this formula as the gradient function, precisely because it tells us the
gradient of the graph. For example,

when y = x2 the gradient function is 2x

So, the gradient of the graph of y = x2 at any point is twice the x value there. To understand
how this formula is actually found you would need to refer to a textbook on calculus. The
important point is that using this formula we can calculate the gradient of y = x2 at different
points on the graph. For example,

when x = 3, the gradient is 2 × 3 = 6.

when x = −2, the gradient is 2 × (−2) = −4.

How do we interpret these numbers? A gradient of 6 means that values of y are increasing at
the rate of 6 units for every 1 unit increase in x. A gradient of −4 means that values of y are
decreasing at a rate of 4 units for every 1 unit increase in x.

Note that when x = 0, the gradient is 2 × 0 = 0.

Below is a graph of the function y = x2. Study the graph and you will note that when x = 3 the
graph has a positive gradient. When x = −2 the graph has a negative gradient. When x = 0
the gradient of the graph is zero. Note how these properties of the graph can be predicted from
knowledge of the gradient function, 2x.

When x = 3 the gradient is positive
and equal to 6

When x = −2 the gradient is negative
and equal to −4.

When x = 0 the gradient is zero.
x

y

−4−3−2−1 0 1 2 3 4

5

10

15
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Example
When y = x3, its gradient function is 3x2. Calculate the gradient of the graph of y = x3 when
a) x = 2, b) x = −1, c) x = 0.

Solution
a) When x = 2 the gradient function is 3(2)2 = 12.

b) When x = −1 the gradient function is 3(−1)2 = 3.

c) When x = 0 the gradient function is 3(0)2 = 0.

2. Notation for the gradient function
You will need to use a notation for the gradient function which is in widespread use.

If y is a function of x, that is y = f(x), we write its gradient function as
dy

dx
.

dy

dx
, pronounced ‘dee y by dee x’, is not a fraction even though it might look like one! This

notation can be confusing. Think of
dy

dx
as the ‘symbol’ for the gradient function of y = f(x).

The process of finding
dy

dx
is called differentiation with respect to x.

Example
For any value of n, the gradient function of xn is nxn−1. We write:

if y = xn, then
dy

dx
= nxn−1

You have seen specific cases of this result earlier on. For example, if y = x3,
dy

dx
= 3x2.

3. More notation and terminology

When y = f(x) alternative ways of writing the gradient function,
dy

dx
, are y′, pronounced ‘y

dash’, or
df

dx
, or f ′, pronounced ‘f dash’. In practice you do not need to remember the formulas

for the gradient functions of all the common functions. Engineers usually refer to a table known
as a Table of Derivatives. A derivative is another name for a gradient function. Such a table
is available in leaflet 8.2. The derivative is also known as the rate of change of a function.

Exercises
1. Given that when y = x2, dy

dx
= 2x, find the gradient of y = x2 when x = 7.

2. Given that when y = xn, dy
dx

= nxn−1, find the gradient of y = x4 when a) x = 2, b) x = −1.

3. Find the rate of change of y = x3 when a) x = −2, b) x = 6.

4. Given that when y = 7x2 + 5x, dy
dx

= 14x+ 5, find the gradient of y = 7x2 + 5x when x = 2.

Answers
1. 14. 2. a) 32, b) −4. 3. a) 12, b) 108. 4. 33.
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✌8.2

Table of derivatives
Introduction
This leaflet provides a table of common functions and their derivatives.

1. The table of derivatives

y = f(x) dy
dx

= f ′(x)

k, any constant 0
x 1
x2 2x
x3 3x2

xn, any constant n nxn−1

ex ex

ekx kekx

lnx = loge x
1
x

sinx cosx
sin kx k cos kx
cosx − sinx
cos kx −k sin kx
tanx = sinx

cosx
sec2 x

tan kx k sec2 kx

cosec x = 1
sinx

−cosec x cot x

sec x = 1
cosx

sec x tanx

cotx = cosx
sinx

−cosec2x
sin−1 x 1√

1−x2

cos−1 x −1√
1−x2

tan−1 x 1
1+x2

coshx sinhx
sinhx coshx
tanhx sech2x
sech x −sech x tanhx
cosechx −cosechx cothx
cothx −cosech2x
cosh−1 x 1√

x2−1

sinh−1 x 1√
x2+1

tanh−1 x 1
1−x2
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Exercises

1. In each case, use the table of derivatives to write down
dy

dx
.

a) y = 8

b) y = −2

c) y = 0

d) y = x

e) y = x5

f) y = x7

g) y = x−3

h) y = x1/2

i) y = x−1/2

j) y = sinx

k) y = cosx

l) y = sin 4x

m) y = cos 1
2
x

n) y = e4x

o) y = ex

p) y = e−2x

q) y = e−x

r) y = lnx

s) y = logex

t) y =
√
x

u) y = 3
√
x

v) y = 1√
x

w) y = ex/2

2. You should be able to use the table when other variables are used. Find
dy

dt
if

a) y = e7t, b) y = t4, c) y = t−1, d) y = sin 3t.

Answers
1. a) 0, b) 0, c) 0, d) 1, e) 5x4, f) 7x6, g) −3x−4, h) 1

2
x−1/2, i) −1

2
x−3/2, j) cosx,

k) − sinx, l) 4 cos 4x, m) −1
2
sin 1

2
x, n) 4e4x, o) ex, p) −2e−2x, q) −e−x, r) 1

x
, s) 1

x

t) 1
2
x−1/2 = 1

2x1/2 = 1
2
√
x
, u) 1

3
x−2/3 = 1

3x2/3 = 1

3
3√
x2

, v) −1
2
x−3/2, w) 1

2
ex/2.

2. a) 7e7t, b) 4t3, c) − 1
t2

, d) 3 cos 3t.
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✌8.3

Linearity rules
Introduction
There are two rules known as linearity rules which, when used with a Table of Derivatives,
enable us to differentiate a wider range of functions. These rules are summarised here.

1. Some notation

Before we look at the rules, we need to be clear about the meaning of the notation
d

dx
.

When we are given a function y(x) and are asked to find
dy

dx
we are being instructed to carry

out an operation on the function y(x). The operation is that of differentiation. A notation for
this operation is used widely:

d

dx
stands for the operation: ‘differentiate with respect to x’

For example,
d

dx
(x3) = 3x2 and

d

dx
(sinx) = cosx.

2. Differentiation of a function multiplied by a constant
If k is a constant and f is a function of x, then

d

dx
(kf) = k

df

dx

This means that a constant factor can be brought outside the differentiation operation.

Example

Given that
d

dx
(x3) = 3x2, then it follows that

d

dx
(7x3) = 7 × d

dx
(x3) = 7 × 3x2 = 21x2

Given that
d

dx
(sinx) = cosx, then it follows that

d

dx
(8 sinx) = 8 × d

dx
(sinx) = 8 cosx
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3. Differentiation of the sum or difference of two functions
If f and g are functions of x, then

d

dx
(f + g) =

df

dx
+

dg

dx

d

dx
(f − g) =

df

dx
− dg

dx

This means that to differentiate a sum of two functions, simply differentiate each separately and
then add the results. Similarly, to differentiate the difference of two functions, differentiate each
separately and then find the difference of the results.

Example

Find
dy

dx
when y = x2 + x.

Solution

We require
d

dx
(x2 + x). The sum rule tells us to differentiate each term separately. Thus

d

dx
(x2 + x) =

d

dx
(x2) +

d

dx
(x) = 2x+ 1

So
dy

dx
= 2x+ 1.

Example

Find
dy

dx
when y = e2x − sin 3x.

Solution
The difference rule tells us to differentiate each term separately.

d

dx
(e2x − sin 3x) =

d

dx
(e2x) − d

dx
(sin 3x) = 2e2x − 3 cos 3x

So
dy

dx
= 2e2x − 3 cos 3x

Exercises

In each case use a Table of Derivatives and the rules on this leaflet to find
dy

dx
.

1. y = e5x + cos 2x

2. y = x2 − sinx

3. y = 3x2 + 7x+ 2

4. y = 5

5. y = 8e−9x

Answers
1. 5e5x − 2 sin 2x, 2. 2x− cosx, 3. 6x+ 7, 4. 0, 5. −72e−9x.
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✌8.4

Product and quotient rules
Introduction
As their names suggest, the product rule and the quotient rule are used to differentiate
products of functions and quotients of functions. This leaflet explains how.

1.The product rule
It is appropriate to use this rule when you want to differentiate two functions which are multiplied
together. For example

y = ex sinx is a product of the functions ex and sinx

In the rule which follows we let u stand for the first of the functions and v stand for the second.

If u and v are functions of x, then

d

dx
(uv) = u

dv

dx
+ v

du

dx

Example

If y = 7xe2x find
dy

dx
.

Solution
Comparing the given function with the product rule we let

u = 7x, v = e2x

It follows that
du

dx
= 7, and

dv

dx
= 2e2x

Thus, using the product rule,

d

dx
(7xe2x) = 7x(2e2x) + e2x(7) = 7e2x(2x+ 1)
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2. The quotient rule
It is appropriate to use this rule when you want to differentiate a quotient of two functions, that
is, one function divided by another. For example

y =
ex

sinx
is a quotient of the functions ex and sinx

In the rule which follows we let u stand for the function in the numerator and v stand for the
function in the denominator.

If u and v are functions of x, then

d

dx

(
u

v

)
=
v du

dx
− u dv

dx

v2

Example

If y =
sinx

3x2
find

dy

dx
.

Solution
Comparing the given function with the quotient rule we let

u = sinx, and v = 3x2

It follows that
du

dx
= cosx and

dv

dx
= 6x

Applying the quotient rule gives

dy

dx
=

3x2 cosx− sinx (6x)

9x4
=

3x(x cosx− 2 sinx)

9x4
=
x cosx− 2 sinx

3x3

Exercises

Choose an appropriate rule in each case to find
dy

dx
.

1. y = x2 sinx

2. y = ex cosx

3. y = ex

x2+1

4. y = x2+1
ex

5. y = 7x loge x

6. y = x−1
sin 2x

Answers
1. x2 cosx+ 2x sin x. 2. −ex sinx+ ex cosx = ex(cosx− sinx). 3. ex(x2−2x+1)

(x2+1)2
.

4. 2x−x2−1
ex . 5. 7(1 + loge x). 6. sin 2x−2(x−1) cos 2x

sin2 2x
.
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✌8.5

The chain rule
Introduction
The chain rule is used when it is necessary to differentiate a function of a function.

This rule is summarised here.

1. The chain rule
Consider the function y = (sinx)3. This process involves cubing the function sinx.

Consider also the function y = loge(x
3 + 5x). Here we are finding the logarithm of the function

x3 + 5x.

In both cases we are finding a function of a function.

The chain rule is used to differentiate such composite functions and is illustrated in the examples
which follow.

Example

Find
dy

dx
when y = sin(5x+ 3).

Solution
Notice that 5x+ 3 is a function of x, so sin(5x+ 3) is a function of a function.

To simplify the problem we can introduce a new variable z and write z = 5x + 3 so that y
becomes

y = sin z

Then, differentiating this with respect to z,

dy

dz
= cos z

Now, in fact, we want
dy

dx
. The chain rule states

dy

dx
=

dy

dz
× dz

dx

So
dy

dx
= cos z × 5 since

dz

dx
= 5

Then, finally
dy

dx
= 5 cos z = 5 cos(5x+ 3)
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The chain rule: if y(z) is a function of z and z(x) is a function of x, then

dy

dx
=

dy

dz
× dz

dx

Example

Find
dy

dx
when y = e(x2).

Solution
x2 is a function, so e(x2) is a function of a function. If we let z = x2, then y = ez. Then

dz

dx
= 2x and

dy

dz
= ez

so that, using the chain rule,

dy

dx
=

dy

dz
× dz

dx
= ez × 2x = 2xe(x2)

Example

If y = sin3 x find
dy

dx
.

Solution
First of all note that sin3 x means (sinx)3. Therefore y can be written y = (sinx)3, so that this
is a function of a function.

If we let z = sinx then y = z3. It follows that

dz

dx
= cosx and

dy

dz
= 3z2

Then, using the chain rule,

dy

dx
=

dy

dz
× dz

dx
= 3z2 × cosx = 3 sin2 x cosx

Exercises

In each case find
dy

dx
.

1. y = sin(x2)

2. y = (sinx)2

3. y = loge(x
2 + 1)

4. y = (2x+ 7)8

5. y = e2x−3

Answers
1. 2x cos(x2). 2. 2 sinx cosx. 3. 2x

x2+1
. 4. 16(2x+ 7)7. 5. 2e2x−3.
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✌8.6

Integration as the reverse of
differentiation

Introduction
Integration can be introduced in several different ways. One way is to think of it as differen-
tiation in reverse. This approach is described in this leaflet.

1. Differentiation in reverse

Suppose we differentiate the function y = x3. We obtain
dy

dx
= 3x2. Integration reverses this

process and we say that the integral of 3x2 is x3. Pictorially we can think of this as follows:

x3 3x

differentiate

integrate

The situation is just a little more complicated because there are lots of functions we can differ-
entiate to give 3x2. Here are some of them:

x3 + 14, x3 + 7, x3 − 0.25, x3 − 1

2

Each of these functions has the same derivative, 3x2, because when we differentiate the constant
term we obtain zero. Consequently, when we try to reverse the process, we have no idea what the
original constant term might have been. Because of this we include in our answer an unknown
constant, c say, called the constant of integration. We state that the integral of 3x2 is x3 + c.

The symbol for integration is
∫

, known as an integral sign. Formally we write

∫
3x2 dx = x3 + c

Along with the integral sign there is a term ‘dx’, which must always be written, and which
indicates the name of the variable involved, in this case x. Technically, integrals of this sort are
called indefinite integrals, to distinguish them from definite integrals which are dealt with
in a subsequent leaflet. When asked to find an indefinite integral your answer should always
contain a constant of integration.
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Common integrals are usually found in a ‘Table of Integrals’ such as that shown here. A more
complete table is available in leaflet 8.7 Table of integrals.

Table of integrals

Function Indefinite integral
f(x)

∫
f(x)dx

constant, k kx+ c

x x2

2
+ c

x2 x3

3
+ c

xn xn+1

n+1
+ c n �= −1

sin x − cosx+ c
cosx sinx+ c
sin kx − cos kx

k
+ c

cos kx sin kx
k

+ c
tan kx 1

k
ln | sec kx|+c

ex ex + c
e−x −e−x + c

ekx ekx

k
+ c

x−1 = 1
x

ln |x| + c

When dealing with the trigonometric functions the variable x must always be measured in
radians.

Example

Use the table above to find a)
∫
x8dx, b)

∫
x−4dx.

Solution
From the table note that ∫

xndx =
xn+1

n+ 1
+ c

a) With n = 8 we find ∫
x8dx =

x8+1

8 + 1
+ c =

x9

9
+ c

b) With n = −4 we find ∫
x−4dx =

x−4+1

−4 + 1
+ c =

x−3

−3
+ c

Note that the final answer can be written in a variety of equivalent ways, for example

−1

3
x−3 + c, or − 1

3
· 1

x3
+ c, or − 1

3x3
+ c

Exercises
1. Integrate each of the following functions:

a) x9, b) x1/2, c) x−3, d) 1
x4 , e) 4, f)

√
x, g) e4x, h) 17, i) cos 5x.

Answers
1. a) x10

10
+ c, b) 2x3/2

3
+ c, c) −1

2
x−2 + c, d) −1

3
x−3 + c,

e) 4x+ c, f) same as b), g) e4x

4
+ c, h) 17x+ c, i) sin 5x

5
+ c.
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✌8.7

Table of integrals
Engineers usually refer to a table of integrals when performing calculations involving integration.
This leaflet provides such a table. Sometimes restrictions need to be placed on the values of
some of the variables. These restrictions are shown in the third column.

1. A table of integrals

f(x)
∫
f(x) dx

k, any constant kx+ c

x x2

2
+ c

x2 x3

3
+ c

xn xn+1

n+1
+ c n �= −1

x−1 = 1
x

ln |x| + c
ex ex + c
ekx 1

k
ekx + c

cosx sinx+ c
cos kx 1

k
sin kx+ c

sinx − cosx+ c
sin kx − 1

k
cos kx+ c

tanx ln(sec x) + c −π
2
< x < π

2

sec x ln(sec x+ tanx) + c −π
2
< x < π

2

cosec x ln(cosecx−cotx) + c 0 < x < π
cotx ln(sinx) + c 0 < x < π
coshx sinhx+ c
sinhx coshx+ c
tanhx ln coshx+ c
cothx ln sinhx+ c x > 0

1
x2+a2

1
a
tan−1 x

a
+ c a > 0

1
x2−a2

1
2a

ln x−a
x+a

+ c |x| > a > 0
1

a2−x2
1
2a

ln a+x
a−x

+ c |x| < a
1√

x2+a2 sinh−1 x
a

+ c a > 0
1√

x2−a2 cosh−1 x
a

+ c x � a > 0
1√

x2+k
ln(x+

√
x2 + k) + c

1√
a2−x2 sin−1 x

a
+ c −a � x � a
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Exercises
1. In each case, use the Table of Integrals to integrate the given function with respect to x.

a) x

b) x6

c) x−2

d) x−3

e) x−1 (be careful!)

f) x1/2

g) x−1/2

h) e3x

i) e7x

j) e−2x

k) e0.5x

l) ex

m) e−x

n) cosx

o) sinx

p) sin 3x

q) cos 2x

r) 5

2. You should be able to use the table when variables other than x are involved. Use the table
to integrate each of the following functions with respect to t.

a) et, b) e5t, c) t7, d)
√
t, e) cos 5t, f) e−t.

Answers
1. a) x2

2
+ c, b) x7

7
+ c, c) x−1

−1
+ c = −x−1 + c, or − 1

x
+ c, d) x−2

−2
+ c = −1

2
x−2 + c, or

− 1
2x2 + c, e) ln |x| + c, f) x3/2

3/2
+ c = 2

3
x3/2 + c, g) x1/2

1/2
+ c = 2x1/2 + c, h) 1

3
e3x + c,

i) 1
7
e7x + c, j) −1

2
e−2x + c, k) 2e0.5x + c, l) ex + c, m) −e−x + c, n) sinx+ c,

o) − cosx+ c, p) −1
3
cos 3x+ c, q) 1

2
sin 2x+ c, r) 5x+ c.

2. a) et + c, b) e5t

5
+ c, c) t8

8
+ c, d) 2t3/2

3
+ c, e) sin 5t

5
+ c, f) −e−t + c.
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✌8.8

Linearity rules of integration
Introduction
To enable us to find integrals of a wider range of functions than those normally given in a Table
of Integrals we can make use of two rules known as linearity rules.

1. The integral of a constant multiple of a function
A constant factor in an integral can be moved outside the integral sign in the following way.

∫
k f(x) dx = k

∫
f(x)dx

This is only possible when k is a constant, and it multiplies some function of x.

Example

Find
∫

11x2 dx.

Solution
We are integrating a multiple of x2. The constant factor,11, can be moved outside the integral
sign. ∫

11x2 dx = 11
∫
x2 dx = 11

(
x3

3
+ c

)
=

11x3

3
+ 11c

where c is the constant of integration. Because 11c is a constant we would normally write the
answer in the form 11x3

3
+K where K is another constant.

Example

Find
∫

−5 cosx dx.

Solution
We are integrating a multiple of cosx. The constant factor, −5, can be moved outside the
integral sign.

∫
−5 cosx dx = −5

∫
cosx dx = −5 (sinx+ c) = −5 sinx+K

where K is a constant.
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2. The integral of the sum or difference of two functions
When we wish to integrate the sum or difference of two functions, we integrate each term
separately as follows:

∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx

∫
f(x) − g(x) dx =

∫
f(x) dx−

∫
g(x) dx

Example

Find
∫

(x3 + sinx)dx.

Solution

∫
(x3 + sinx)dx =

∫
x3 dx+

∫
sinx dx =

x4

4
− cosx+ c

Note that only a single constant of integration is needed.

Example

Find
∫

e3x − x7 dx.

Solution

∫
e3x − x7 dx =

∫
e3x dx −

∫
x7 dx =

e3x

3
− x8

8
+ c

Exercises
1. Find a)

∫
8x5 + 3x2 dx, b)

∫ 2
3
x dx.

2. Find
∫

3 cosx+ 7x3 dx.

3. Find
∫

7x−2dx.

4. Find
∫ 5

x
dx.

5. Find
∫ x+cos 2x

3
dx.

6. Find
∫

5e4xdx.

7. Find
∫ ex−e−x

2
dx.

Answers
1. a) 4x6

3
+ x3 + c, b) 1

3
x2 + c. 2. 3 sinx+ 7x4

4
+ c. 3. − 7

x
+ c. 4. 5 loge |x| + c.

5. x2

6
+ sin 2x

6
+ c. 6. 5e4x

4
+ c. 7. ex+e−x

2
+ c.
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✌8.9

Evaluating definite integrals
Introduction
Definite integrals can be recognised by numbers written to the upper and lower right of the
integral sign. This leaflet explains how to evaluate definite integrals.

1. Definite integrals
The quantity ∫ b

a
f(x) dx

is called the definite integral of f(x) from a to b. The numbers a and b are known as the
lower and upper limits of the integral. To see how to evaluate a definite integral consider the
following example.

Example

Find
∫ 4

1
x2dx.

Solution
First of all the integration of x2 is performed in the normal way. However, to show we are
dealing with a definite integral, the result is usually enclosed in square brackets and the limits
of integration are written on the right bracket:

∫ 4

1
x2 dx =

[
x3

3
+ c

]4

1

Then, the quantity in the square brackets is evaluated, first by letting x take the value of the
upper limit, then by letting x take the value of the lower limit. The difference between these
two results gives the value of the definite integral:

[
x3

3
+ c

]4

1

= (evaluate at upper limit) − (evaluate at lower limit)

=

(
43

3
+ c

)
−

(
13

3
+ c

)

=
64

3
− 1

3
= 21

Note that the constants of integration cancel out. This will always happen, and so in future we
can ignore them when we are evaluating definite integrals.
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Example

Find
∫ 3

−2
x3dx.

Solution

∫ 3

−2
x3dx =

[
x4

4

]3

−2

=

(
(3)4

4

)
−

(
(−2)4

4

)

=
81

4
− 16

4

=
65

4
= 16.25

Example

Find
∫ π/2

0
cosx dx.

Solution

∫ π/2

0
cosx dx = [sinx]π/20

= sin
(
π

2

)
− sin 0

= 1 − 0

= 1

Exercises
1. Evaluate

a)
∫ 1
0 x

2dx, b)
∫ 3
2

1
x2 dx, c)

∫ 2
1 x

2dx, d)
∫ 4
0 x

3dx, e)
∫ 1
−1 x

3dx.

2. Evaluate
∫ 4
3 x+ 7x2 dx.

3. Evaluate a)
∫ 1
0 e2xdx, b)

∫ 2
0 e−xdx, c)

∫ 1
−1 x

2dx, d)
∫ 1
−1 5x3dx.

4. Find
∫ π/2

0
sinxdx.

Answers
1. a) 1

3
, b) 1

6
, c) 7

3
, d) 64, e) 0.

2. 89.833 (3dp).

3. a) e2

2
− 1

2
= 3.195 (3dp), b) 1 − e−2 = 0.865 (3dp), c) 2

3
, d) 0.

4. 1.
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✌8.10

Integration by parts
Introduction
The technique known as integration by parts is used to integrate a product of two functions,
for example ∫

e2x sin 3x dx and
∫ 1

0
x3e−2x dx

This leaflet explains how to apply this technique.

1. The integration by parts formula
We need to make use of the integration by parts formula which states:

∫
u

(
dv

dx

)
dx = uv −

∫
v

(
du

dx

)
dx

Note that the formula replaces one integral, the one on the left, with a different integral, that
on the right. The intention is that the latter is simpler to evaluate. Note also that to apply the
formula we must let one function in the product equal u. We must be able to differentiate this

function to find
du

dx
. We let the other function in the product equal

dv

dx
. We must be able to

integrate this function, to find v. Consider the following example:

Example

Find
∫

3x sin x dx.

Solution
Compare the required integral with the formula for integration by parts: we see that it makes
sense to choose

u = 3x and
dv

dx
= sinx

It follows that

du

dx
= 3 and v =

∫
sinx dx = − cosx

(When integrating
dv

dx
to find v there is no need to include a constant of integration. When you

become confident with the method, you may like to think about why this is the case.) Applying
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the formula we obtain

∫
3x sin x dx = uv −

∫
v

(
du

dx

)
dx

= 3x(− cosx) −
∫

(− cosx).(3) dx

= −3x cosx+ 3
∫

cosx dx

= −3x cosx+ 3 sinx+ c

2. Dealing with definite integrals
When dealing with definite integrals (those with limits of integration) the corresponding formula
is

∫ b

a
u

(
dv

dx

)
dx = [uv]ba −

∫ b

a
v

(
du

dx

)
dx

Example

Find
∫ 2

0
xexdx.

Solution

We let u = x and
dv

dx
= ex. Then

du

dx
= 1 and v = ex. Using the formula for integration by

parts we obtain

∫ 2

0
xexdx = [xex]20 −

∫ 2

0
ex.1dx

= (2e2) − (0e0) − [ex]20
= 2e2 − [e2 − 1]

= e2 + 1 (or 8.389 to 3dp)

Exercises
1. Find a)

∫
x sin(2x)dx, b)

∫
te3tdt, c)

∫
x cosx dx.

2. Evaluate the following definite integrals:

a)
∫ 1
0 x cos 2x dx, b)

∫ π/2
0 x sin 2x dx, c)

∫ 1
−1 te

2tdt.

(Remember to set your calculator to radian mode for evaluating the trigonometric functions.)

3. Find
∫ 2
0 x

2exdx. (You will need to apply the integration by parts formula twice.)

Answers
1. a) sin 2x

4
− x cos 2x

2
+ c, b) e3t( t

3
− 1

9
) + c, c) cosx+ x sinx+ c.

2. a) 0.1006, b) 0.7854, c) 1.9488.

3. 12.778 (3dp).
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✌8.11

Integration by substitution
Introduction
This technique involves making a substitution in order to simplify an integral before evaluating
it. We let a new variable, u say, equal a more complicated part of the function we are trying to
integrate. The choice of which substitution to make often relies upon experience: don’t worry
if at first you cannot see an appropriate substitution. This skill develops with practice.

1. Making a substitution

Example

Find
∫

(3x+ 5)6dx.

Solution
First look at the function we are trying to integrate: (3x + 5)6. Suppose we introduce a new
variable, u, such that u = 3x+5. Doing this means that the function we must integrate becomes
u6. This certainly looks a much simpler function to integrate than (3x + 5)6. There is a slight
complication however. The new function of u must be integrated with respect to u and not with
respect to x. This means that we must take care of the term dx correctly. From the substitution

u = 3x+ 5

note, by differentiation, that
du

dx
= 3

It follows that we can write

dx =
du

3

The required integral then becomes

∫
(3x+ 5)6dx =

∫
u6 du

3

The factor of 1
3
, being a constant, means that we can write

∫
(3x+ 5)6dx =

1

3

∫
u6du

=
1

3

u7

7
+ c

=
u7

21
+ c
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To finish off we rewrite this answer in terms of the original variable, x, and replace u by 3x+ 5:

∫
(3x+ 5)6dx =

(3x+ 5)7

21
+ c

2. Substitution and definite integrals
If you are dealing with definite integrals (ones with limits of integration) you must be particularly
careful with the way you handle the limits. Consider the following example.

Example

Find
∫ 3

2
t sin(t2)dt by making the substitution u = t2.

Solution

Note that if u = t2 then
du

dt
= 2t so that dt =

du

2t
. We find

∫ t=3

t=2
t sin(t2)dt =

∫ t=3

t=2
t sinu

du

2t

=
1

2

∫ t=3

t=2
sinu du

An important point to note is that the original limits of integration are limits on the variable
t, not u. To emphasise this they have been written explicitly as t = 2 and t = 3. When we
integrate with respect to the variable u, the limits must be written in terms of u too. From the
substitution u = t2, note that

when t = 2, u = 4 and when t = 3, u = 9

so the integral becomes

1

2

∫ u=9

u=4
sinu du =

1

2
[− cosu]94

=
1

2
(− cos 9 + cos 4)

= 0.129

Exercises
1. Use a substitution to find

a)
∫
(4x+ 1)7dx, b)

∫ 2
1 (2x+ 3)7dx, c)

∫
t2 sin(t3 + 1)dt, d)

∫ 1
0 3t2et

3
dt.

2. Make a substitution to find the following integrals. Can you deduce a rule for integrating
functions of the form f ′(x)

f(x)
?

a)
∫ 1

x+1
dx, b)

∫ 2x
x2+7

dx, c)
∫ 3x2

x3+17
dx.

Answers
1. a) (4x+1)8

32
+ c, b) 3.3588 × 105, c) − cos(t3+1)

3
+ c, d) 1.7183.

2. a) ln(x+ 1) + c, b) ln(x2 + 7) + c, c) ln(x3 + 17) + c.
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✌8.12

Integration as summation
Introduction
In this leaflet we explain integration as an infinite sum.

1. Integration as summation
The figure below on the left shows an area bounded by the x axis, the lines x = a and x = b,
and the curve y = f(x). Note that the area lies entirely above the x axis.

P

δx
a b

x

y

(x y),

y=f(x)
y f(x)=

δx

δAy = f(x)

a b
x

y

There are several ways in which this area can be estimated. Suppose we split the area into thin
vertical strips, like the one shown, and treat each strip as being approximately rectangular. The
sum of the areas of the rectangular strips then gives an approximate value for the area under
the curve. The thinner the strips, the better will be the approximation. A typical strip is shown
drawn from the point P (x, y). The width of the strip is labelled δx. We label it like this because
the symbol δ is used to indicate a small increase in the variable being considered, in this case
x. The height of the strip is equal to the y value on the curve at point P , that is f(x). So the
area of the strip shown is approximately f(x) δx. Suppose we let the area of this small strip be
δA. We use the delta notation again, because this strip makes a small contribution, δA, to the
total area, A, under the curve. Then

δA ≈ f(x) δx

Now if we add up the areas of all such thin strips from a to b, which we denote by
∑b

x=a δA, we
obtain the total area under the curve.

total area =
b∑

x=a

δA ≈
b∑

x=a

f(x) δx

To make this approximation more accurate we must let the thickness of each strip become very
small indeed, that is, we let δx→ 0, giving

total area = lim
δx→0

b∑
x=a

f(x)δx
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The notation limδx→0 means that we consider what happens to the expression following it as δx
gets smaller and smaller. This is known as the limit of a sum. If this limit exists we write it
formally as ∫ b

a
f(x) dx

thus defining a definite integral as the limit of a sum. Thus we have the important result that

∫ b

a
f(x) dx = lim

δx→0

b∑
x=a

f(x) δx

Integration can therefore be regarded as a process of adding up, that is as a summation. When-
ever we wish to find areas under curves, volumes etc., we can do this by finding the area or
volume of a small portion, and then summing over the whole region of interest. The calculation
can then be performed using the technique of definite integration.

Example

Et

En

C

δsE

Suppose a unit charge moves along a curve C in an electric field E. At any point on the curve
the electric field vector can be resolved into two perpendicular components, Et say, along the
curve, and En perpendicular, or normal, to the curve. In moving the charge a small distance δs
along the curve the electric field does work equal to Etδs, because only the tangential component
does work. To find the total work done as the charge moves along the length of the curve we
must sum all such small contributions, i.e.

total work done =
∑
Et δs, in the limit as δs→ 0

that is
total work done = limδs→0

∑
Et δs

which defines the integral
∫
C Etds. The symbol

∫
C tells us to sum the contributions along the

curve C. This is an example of a line integral because we integrate along the line (curve) C.

Exercises
1. Write down, but do not calculate, the integral which is defined by the limit as δx→ 0, of the
following sums.

a)
∑x=5

x=3 7x2 δx, b)
∑x=7

x=1
4
3
πx3 δx.

Answers
1. a)

∫ 5
3 7x2dx, b)

∫ 7
1

4
3
πx3dx.
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